Write an algorithm to determine if a number is "happy".
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example: 19 is a happy number
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
========================
public class Solution {
private static int maxTimes = 100;
public boolean isHappy(int n, int times) {
String sn = String.valueOf(n);
int ss = sn.length();
int sum = 0;
if(times >= Solution.maxTimes){
return false;
}
for(int i=0;i<ss-1; i++){
int y = n % Math.pow(10, ss-i);
int z = y / Math.pow(10, i+1);
sum += Math.pow(z, 2);
}
if(sum == 1) return true;
times++;
isHappy(sum, times);
}
}
-------------------------------------
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
2
/ \
1 3
Binary tree [2,1,3], return true.
Example 2:
1
/ \
2 3
Binary tree [1,2,3], return false.
=====================================
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
if(root == null) return false;
if(root.left != null){
if(root.left.val >= root.val)return false;
}
if(root.left.right != null){
if(root.left.right.val >= root.val)return false;
}
if(root.right != null){
if(root.right.val <= root.val)return false;
}
if(root.right.left != null){
if(root.right.left.val <= root.val)return false;
}
if(root.left != null) isValidBST(root.left);
if(root.right != null) isValidBST(root.right);
return true;
}
}