mmdetection测试报错,data['category_id'] = self.cat_ids[label] IndexError: list index out of range
解决方案
测试自己的数据集之前,是否做了以下操作:
- 修改模型配置文件中的类别数
num_classes为自己数据集中的类别数,我这里设置为1:num_classes=1 - 在
mmdet/evaluation/functional/class_names.py中找到函数coco_classes()注释掉原来的类名,替换为自己的类名,如下所示:
def coco_classes() -> list:
"""Class names of COCO."""
return ['pedestrian']
# return [
# 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
# 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign',
# 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
# 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
# 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
# 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard',
# 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork',
# 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
# 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair',
# 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv',
# 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave',
# 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
# 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush'
# ]
- 找到文件
mmdet/datasets/coco.py,注释掉原来的类名,如下所示:
class CocoDataset(BaseDetDataset):
"""Dataset for COCO."""
METAINFO = {
'classes': 'pedestrain'
# ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
# 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
# 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
# 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
# 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
# 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
# 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
# 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
# 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
# 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
# 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
# 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
# 'scissors', 'teddy bear', 'hair drier', 'toothbrush'),
# palette is a list of color tuples, which is used for visualization.
'palette': [(220, 20, 60), ]
# [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),
# (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),
一般来说执行了以上操作,再测试就不会出错了。但是,我做了以上操作,依旧报错:
Traceback (most recent call last):
File "tools/test.py", line 149, in <module>
main()
File "tools/test.py", line 145, in main
runner.test()
File "/root/anaconda3/envs/py38/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1823, in test
metrics = self.test_loop.run() # type: ignore
File "/root/anaconda3/envs/py38/lib/python3.8/site-packages/mmengine/runner/loops.py", line 466, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/root/anaconda3/envs/py38/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/root/anaconda3/envs/py38/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/tmp/mmdetProject/mmdet/evaluation/metrics/coco_metric.py", line 424, in compute_metrics
result_files = self.results2json(preds, outfile_prefix)
File "/tmp/mmdetProject/mmdet/evaluation/metrics/coco_metric.py", line 244, in results2json
data['category_id'] = self.cat_ids[label]
IndexError: list index out of range
可以看到,报错信息是这行代码:data['category_id'] = self.cat_ids[label],找到报错的文件coco_metric.py,定位到244行,Ctrl+F,找到有self.cat_ids[label]的地方,可以找到下面的代码:
# handle lazy init
if self.cat_ids is None:
self.cat_ids = self._coco_api.get_cat_ids(
cat_names=self.dataset_meta['classes'])
if self.img_ids is None:
self.img_ids = self._coco_api.get_img_ids()
可以看到cat_ids是调用函数self._coco_api.get_cat_ids(),并使用类别名作为参数之后的返回结果。问题就出在这里!!!。因为使用官方的数据集格式转换文件tools/dataset_converters/crowdhuman2coco.py,默认的类别名是pedestrian,我在修改上述包含classes的类别名是person,class name不一致,因此返回的id是空列表,也就出现数组越界的错误!!!!最后就正常了,不会报错了
总结
- 修改模型配置文件中的
num_classes - 修改
mmdet/evaluation/functional/class_names.py中的coco_classes() - 修改文件
mmdet/datasets/coco.py中的METAINFO - 检查标注文件的类名是否和上述文件中的类别名一致!!!

浙公网安备 33010602011771号