小议同步IO :fsync与fdatasync

对于提供事务支持的数据库,在事务提交时,都要确保事务日志(包含该事务所有的修改操作以及一个提交记录)完全写到硬盘上,才认定事务提交成功并返回给应用层。

一个简单的问题:在*nix操作系统上,怎样保证对文件的更新内容成功持久化到硬盘?

 

1.  write不够,需要fsync

一般情况下,对硬盘(或者其他持久存储设备)文件的write操作,更新的只是内存中的页缓存(page cache),而脏页面不会立即更新到硬盘中,而是由操作系统统一调度,如由专门的flusher内核线程在满足一定条件时(如一定时间间隔、内存中的脏页达到一定比例)内将脏页面同步到硬盘上(放入设备的IO请求队列)。
因为write调用不会等到硬盘IO完成之后才返回,因此如果OS在write调用之后、硬盘同步之前崩溃,则数据可能丢失。虽然这样的时间窗口很小,但是对于需要保证事务的持久化(durability)和一致性(consistency)的数据库程序来说,write()所提供的“松散的异步语义”是不够的,通常需要OS提供的同步IO(synchronized-IO)原语来保证:
1 #include <unistd.h>
2 int fsync(int fd);
fsync的功能是确保文件fd所有已修改的内容已经正确同步到硬盘上,该调用会阻塞等待直到设备报告IO完成。
 
 
PS:如果采用内存映射文件的方式进行文件IO(使用mmap,将文件的page cache直接映射到进程的地址空间,通过写内存的方式修改文件),也有类似的系统调用来确保修改的内容完全同步到硬盘之上:
1 #incude <sys/mman.h>
2 int msync(void *addr, size_t length, int flags)

msync需要指定同步的地址区间,如此细粒度的控制似乎比fsync更加高效(因为应用程序通常知道自己的脏页位置),但实际上(Linux)kernel中有着十分高效的数据结构,能够很快地找出文件的脏页,使得fsync只会同步文件的修改内容。

 

2. fsync的性能问题,与fdatasync

除了同步文件的修改内容(脏页),fsync还会同步文件的描述信息(metadata,包括size、访问时间st_atime & st_mtime等等),因为文件的数据和metadata通常存在硬盘的不同地方,因此fsync至少需要两次IO写操作,fsync的man page这样说:

"Unfortunately fsync() will always initialize two write operations : one for the newly written data and another one in order to update the modification time stored in the inode. If the modification time is not a part of the transaction concept fdatasync() can be used to avoid unnecessary inode disk write operations."

多余的一次IO操作,有多么昂贵呢?根据Wikipedia的数据,当前硬盘驱动的平均寻道时间(Average seek time)大约是3~15ms,7200RPM硬盘的平均旋转延迟(Average rotational latency)大约为4ms,因此一次IO操作的耗时大约为10ms左右。这个数字意味着什么?下文还会提到。

 

Posix同样定义了fdatasync,放宽了同步的语义以提高性能:

1 #include <unistd.h>
2 int fdatasync(int fd);
fdatasync的功能与fsync类似,但是仅仅在必要的情况下才会同步metadata,因此可以减少一次IO写操作。那么,什么是“必要的情况”呢?根据man page中的解释:
"fdatasync does not flush modified metadata unless that metadata is needed in order to allow a subsequent data retrieval to be corretly handled."
举例来说,文件的尺寸(st_size)如果变化,是需要立即同步的,否则OS一旦崩溃,即使文件的数据部分已同步,由于metadata没有同步,依然读不到修改的内容。而最后访问时间(atime)/修改时间(mtime)是不需要每次都同步的,只要应用程序对这两个时间戳没有苛刻的要求,基本无伤大雅。
 
 
PS:open时的参数O_SYNC/O_DSYNC有着和fsync/fdatasync类似的语义:使每次write都会阻塞等待硬盘IO完成。(实际上,Linux对O_SYNC/O_DSYNC做了相同处理,没有满足Posix的要求,而是都实现了fdatasync的语义)相对于fsync/fdatasync,这样的设置不够灵活,应该很少使用。
 
 

3. 使用fdatasync优化日志同步

文章开头时已提到,为了满足事务要求,数据库的日志文件是常常需要同步IO的。由于需要同步等待硬盘IO完成,所以事务的提交操作常常十分耗时,成为性能的瓶颈。
在Berkeley DB下,如果开启了AUTO_COMMIT(所有独立的写操作自动具有事务语义)并使用默认的同步级别(日志完全同步到硬盘才返回),写一条记录的耗时大约为5~10ms级别,基本和一次IO操作(10ms)的耗时相同。
 我们已经知道,在同步上fsync是低效的。但是如果需要使用fdatasync减少对metadata的更新,则需要确保文件的尺寸在write前后没有发生变化。日志文件天生是追加型(append-only)的,总是在不断增大,似乎很难利用好fdatasync。
 
且看Berkeley DB是怎样处理日志文件的:
1.每个log文件固定为10MB大小,从1开始编号,名称格式为“log.%010d"
2.每次log文件创建时,先写文件的最后1个page,将log文件扩展为10MB大小
3.向log文件中追加记录时,由于文件的尺寸不发生变化,使用fdatasync可以大大优化写log的效率
4.如果一个log文件写满了,则新建一个log文件,也只有一次同步metadata的开销

 

 

参考资料:

1. linux man pages for fsync/msync/open
2. 《Unix环境高级编程》
3. Berkeley DB Source Code

 

posted @ 2012-05-27 14:11  PromisE_谢  阅读(...)  评论(... 编辑 收藏