摘要: 1. Dropout 如果模型参数过多,而训练样本过少,容易陷入过拟合。过拟合的表现主要是:在训练数据集上loss比较小,准确率比较高,但是在测试数据上loss比较大,准确率比较低。Dropout可以比较有效地缓解模型的过拟合问题,起到正则化的作用。 Dropout,中文是随机失活,是一个简单又机器 阅读全文
posted @ 2020-04-05 10:03 pprp 阅读(1806) 评论(0) 推荐(0)