随笔分类 - 计算机视觉
摘要:上一篇文章推荐了DarkLabel标注软件,承诺会附上配套的代码,本文主要分享的是格式转换的几个脚本。 先附上脚本地址: https://github.com/pprp/SimpleCVReproduction/tree/master/DarkLabel 先来了解一下为何DarkLabel能生成这么
阅读全文
摘要:DarkLabel是一个轻量的视频标注软件,相比于ViTBAT等软件而言,不需要安装就可以使用, 本文将介绍darklabel软件的使用指南。 由于笔者最近在做Multi Object Tracking的项目,所以需要一款标注软件,最终从公开的软件中选择了DarkLabel。DarkLabel体积非
阅读全文
摘要:AlexeyAB大神继承了YOLOv3, 在其基础上进行持续开发,将其命名为YOLOv4。并且得到YOLOv3作者Joseph Redmon的承认,下面是Darknet原作者的在readme中更新的声明。 来看看YOLOv4和一些SOTA模型的对比,YOLOv4要比YOLOv3提高了近10个点。 1
阅读全文
摘要:HRNet是微软亚洲研究院的王井东老师领导的团队完成的,打通图像分类、图像分割、目标检测、人脸对齐、姿态识别、风格迁移、Image Inpainting、超分、optical flow、Depth estimation、边缘检测等网络结构。 王老师在ValseWebinar《物体和关键点检测》中亲自
阅读全文
摘要:本文主要讲解Deep SORT论文核心内容,包括状态估计、匹配方法、级联匹配、表观模型等核心内容。 1. 简介 Simple Online and Realtime Tracking(SORT)是一个非常简单、有效、实用的多目标跟踪算法。在SORT中,仅仅通过IOU来进行匹配虽然速度非常快,但是ID
阅读全文
摘要:本文解读内容是IBN Net, 笔者最初是在很多行人重识别的库中频繁遇到比如ResNet ibn这样的模型,所以产生了阅读并研究这篇文章的兴趣,文章全称是: 《Two at Once: Enhancing Learning and Generalization Capacities via IBN
阅读全文
摘要:1. Dropout 如果模型参数过多,而训练样本过少,容易陷入过拟合。过拟合的表现主要是:在训练数据集上loss比较小,准确率比较高,但是在测试数据上loss比较大,准确率比较低。Dropout可以比较有效地缓解模型的过拟合问题,起到正则化的作用。 Dropout,中文是随机失活,是一个简单又机器
阅读全文
摘要:YOLOv1是一个anchor free的,从YOLOv2开始引入了Anchor,在VOC2007数据集上将mAP提升了10个百分点。YOLOv3也继续使用了Anchor,本文主要讲ultralytics版YOLOv3的Loss部分的计算, 实际上这部分loss和原版差距非常大,并且可以通过arc指
阅读全文
摘要:CSPNet全称是Cross Stage Partial Network,主要从一个比较特殊的角度切入,能够在降低20%计算量的情况下保持甚至提高CNN的能力。CSPNet开源了一部分cfg文件,其中一部分cfg可以直接使用AlexeyAB版Darknet还有ultralytics的yolov3运行
阅读全文
摘要:上次bbuf分享了亚马逊团队的用于分类模型的bag of tricks, 详见: "链接" , 本文继续梳理一下目标检测trick, 解读这篇19年同样由亚马逊团队发表的《Bag of Freebies for Training Object Detection Neural Networks》。先
阅读全文
摘要:在计算机视觉中,卷积是最重要的概念之一。同时研究人员也提出了各种新的卷积或者卷积组合来进行改进,其中有的改进是针对速度、有的是为了加深模型、有的是为了对速度和准确率的trade off。本文将简单梳理一下 卷积神经网络中用到的各种卷积核以及改进版本 。文章主要是进行一个梳理,着重讲其思路以及作用。
阅读全文
摘要:池化操作(Pooling)是CNN中非常常见的一种操作,Pooling层是模仿人的视觉系统对数据进行降维,池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减少网络参数的同时还可
阅读全文
摘要:前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。 1. cfg文件 在YOLOv3中,修改网络结构很容易,只需要
阅读全文
摘要:前言:YOLOv3代码中也提供了参数搜索,可以为对应的数据集进化一套合适的超参数。本文建档分析一下有关这部分的操作方法以及其参数的具体进化方法。 1. 超参数 YOLOv3中的 超参数在train.py中提供,其中包含了一些数据增强参数设置,具体内容如下: 2. 使用方法 在训练的时候,train.
阅读全文
摘要:前言:本文主要讲YOLOv3中数据加载部分,主要解析的代码在utils/datasets.py文件中。通过对数据组织、加载、处理部分代码进行解读,能帮助我们更快地理解YOLOv3所要求的数据输出要求,也将有利于对之后训练部分代码进行理解。 1. 标注格式 在上一篇 "【从零开始学习YOLOv3】2.
阅读全文
摘要:ThunderNet是旷视和国防科技大学合作提出的目标检测模型,目标是在计算力受限的平台进行实时目标检测。需要关注的地方主要就是提出的两个特征增强模块CEM和SAM,其设计理念和应用的方法都非常值得借鉴。 1. 介绍 在移动端的实时目标检测是一个极为重要并且有挑战性的视觉问题。很多基于CNN的检测器
阅读全文
摘要:在深度学习模型的训练过程中,难免引入随机因素,这就会对模型的可复现性产生不好的影响。但是对于研究人员来讲,模型的可复现性是很重要的。这篇文章收集并总结了可能导致模型难以复现的原因,虽然 不可能完全避免随机因素 ,但是可以通过一些设置尽可能降低模型的随机性。 1. 常规操作 PyTorch官方提供了一
阅读全文
摘要:最近要做一个有关多目标跟踪的项目,刚刚接触MOT,所以先来了解一下MOT16这个比较经典的数据集以及比较经典的评价标准。 1. 多目标跟踪 多目标跟踪处理的对象是视频,从视频的第一帧到最后一帧,里边有多个目标在不断运动。多目标跟踪的目的就是将每个目标和其他目标进行区分开来,具体方法是给每个目标分配一
阅读全文
摘要:1. 概念 经典的目标检测如Faster R-CNN, YOLOv3等都用到了Anchor, 怎么设计Anchor每个目标检测方法各不相同。Faster R-CNN中的Anchor有三种形状,三种长宽比,比如形状有[128, 256, 512]三个,长宽比有[1:1, 1:2, 2:1]三种,这样组
阅读全文
摘要:前言:【从零开始学习YOLOv3】系列越写越多,本来安排的内容比较少,但是在阅读代码的过程中慢慢发掘了一些新的亮点,所以不断加入到这个系列中。之前都在读YOLOv3中的代码,已经学习了cfg文件、模型构建等内容。本文在之前的基础上,对模型的代码进行修改,将之前Attention系列中的SE模块和CB
阅读全文

浙公网安备 33010602011771号