bzoj2440 [中山市选2011]完全平方数

先二分一下变成判定性问题。
\(1 \ldots n\) 内,所有的没有平方因子的数的个数是:

\[n - \frac{n}{2^2} - \frac{n}{3^2} - \cdots + \frac{n}{(2 \times 3)^2} + \cdots \]

惊奇地发现也就是

\[\sum_{k=1}^{\sqrt{n}}\mu(k)\left \lfloor \frac{n}{k^2} \right \rfloor \]

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
int T, mu[100005], pri[100005], cnt;
bool isp[100005];
ll k;
void shai(){
	memset(isp, true, sizeof(isp));
	isp[0] = isp[1] = false;
	mu[1] = 1;
	for(int i=2; i<=100000; i++){
		if(isp[i])	pri[++cnt] = i, mu[i] = -1;
		for(int j=1; j<=cnt; j++){
			if(i*pri[j]>100000)	break;
			isp[i*pri[j]] = false;
			if(i%pri[j]==0){
				mu[i*pri[j]] = 0;
				break;
			}
			else	mu[i*pri[j]] = -mu[i];
		}
	}
}
ll chk(int x){
	ll q=sqrt(x), re=0;
	for(int i=1; i<=q; i++)
		re += mu[i] * x / (i * i);
	return re;
}
int main(){
	cin>>T;
	shai();
	while(T--){
		scanf("%lld", &k);
		ll l=1, r=2e9, mid, ans;
		while(l<=r){
			mid = (l + r) >> 1;
			if(chk(mid)>=k){
				ans = mid;
				r = mid - 1;
			}
			else	l = mid + 1;
		}
		printf("%lld\n", ans);
	}
	return 0;
}
拙いものと思えども、 その手に握る其れこそが、 いつか幻想を生んでいく。
posted @ 2018-01-25 16:27  poorpool  阅读(127)  评论(0编辑  收藏  举报