HDU 6397(2018多校第8场1001) Character Encoding 容斥
听了杜教的直播后知道了怎么做,有两种方法,一种构造函数(现在太菜了,听不懂,以后再补),一种容斥原理。
知识补充1:若x1,x2,.....xn均大于等于0,则x1+x2+...+xn=k的方案数是C(k+m-1,m-1)种(貌似紫书上有,记不太清了)。
知识补充2:若限制条件为n(即x1,x2....xn均小于n,假设有c个违反,则把k减掉c个n(相当于把c个超过n的数也变成大于等于0的),就可以套用知识1的公式了。
则最后的答案为sum( (-1)^c * C(m , c) * C(m-1+k-n*c , m-1) );
这个题貌似要预处理出乘法逆元,不然会TLE。我的lucas定理做法超时了。。。
借鉴了杜教链接中的代码,O(n)时间预处理:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL mod=998244353;
const int maxn=203000;
LL f[maxn],fv[maxn];//f是阶乘,fv是乘法逆元
LL quick_power(LL a,LL b){
LL ans=1;
for(;b;b>>=1){
if(b&1)ans=ans*a%mod;
a=a*a%mod;
}
return ans;
}
void init(){//初始化
f[0]=1;
for(LL i=1;i<maxn;i++)
f[i]=(f[i-1]*i)%mod;
fv[maxn-1]=quick_power(f[maxn-1],mod-2);
for(LL i=maxn-1;i>0;i--){
fv[i-1]=fv[i]*i%mod;
}
}
LL C(LL n,LL m){//这样可以O(1)计算出组合数
if(n<0||m<0||n<m)return 0;
return f[n]*(fv[m])%mod*fv[n-m]%mod;
}
int main(){
LL n,m,k,ans;
int T;
init();
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&k);
LL ans=0;
for(int c=0;c*n<=k;c++){//容斥
if(c&1)ans=(ans-C(m,c)*C(k-c*n-1+m,m-1)%mod+mod)%mod;
else ans=(ans+C(m,c)*C(k-c*n-1+m,m-1)%mod)%mod;
}
printf("%lld\n",ans);
}
}
还是附上超时代码,单次查询是O(lgn)的,如果查询次数比较少可以用这个,可以当作模板。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL mod=998244353;
LL power(LL a){
if(a&1)return -1;
return 1;
}
LL quick_power(LL a,LL b){
LL ans=1%mod;
while(b){
if(b&1){
ans=ans*a%mod;
b--;
}
b>>=1;
a=a*a%mod;
}
return ans;
}
LL C(LL n,LL m){
if(m>n)return 0;
LL ans=1;
for(int i=1;i<=m;i++){
LL a=(n+i-m)%mod;
LL b=i%mod;
ans=ans*(a*quick_power(b,mod-2)%mod)%mod;
}
return ans;
}
LL lucas(LL n,LL m){
if(m==0)return 1;
return C(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
int main(){
LL n,m,k,ans;
int T;
scanf("%d",&T);
while(T--){
ans=0;
scanf("%lld%lld%lld",&n,&m,&k);
for(LL i=0;i*n<=k;i++){
ans=(ans+(((power(i)*lucas(m,i))%mod)*lucas(m-1+k-n*i,m-1))%mod)%mod;
}
printf("%lld\n",ans);
}
}

浙公网安备 33010602011771号