深入理解ThreadLocal的原理和内存泄漏问题

ThreadLocal作用和原理分析:
ThreadLocal主要为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。

要理解ThreadLocal需要理解下面三个问题:

①、每个线程的变量副本是存储在哪里的?(参考ThreadLocal的get()源码)
  每个线程都有一个threadLocals成员,引用类型是ThreadLocalMap,以ThreadLocal和ThreadLocal对象声明的变量类型作为参数。这样,我们所使用的ThreadLocal变量的实际数据,通过get函数取值的时候,就是通过取出Thread中threadLocals引用的map,然后从这个map中根据当前threadLocal作为key,取出数据。也就是说其实不同线程取到的变量副本都是由线程本身的提供的,存储在线程本身,只是借助ThreadLocal去获取,不是存放于 ThreadLocal。

②、变量副本【每个线程中保存的那个map中的变量】是怎么声明和初始化的?
  当线程中的threadLocals成员是null的时候,会调用ThreadLocal.createMap(Thread t, T firstValue)创建一个map。同时根据函数参数设置上初始值。也就是说,当前线程的threadlocalmap是在第一次调用set的时候创建map并且设置上相应的值的。
在每个线程中,都维护了一个threadlocals对象,在没有ThreadLocal变量的时候是null的。一旦在ThreadLocal的createMap函数中初始化之后,这个threadlocals就初始化了。以后每次ThreadLocal对象想要访问变量的时候,比如set函数和get函数,都是先通过getMap(Thread t)函数,先将线程的map取出,然后再从这个在线程(Thread)中维护的map中取出数据或者存入对应数据。

③、不同的线程局部变量,比如说声明了n个(n>=2)这样的线程局部变量threadlocal,那么在Thread中的threadlocals中是怎么存储的呢?threadlocalmap中是怎么操作的?
  在ThreadLocal的set函数中,可以看到,其中的map.set(this, value)把当前的threadlocal传入到map中作为键,也就是说,在不同的线程的threadlocals变量中,都会有一个以你所声明的那个线程局部变量threadlocal作为键的key-value。

  假设说声明了N个这样的线程局部变量变量,那么在线程的ThreadLocalMap中就会有n个分别以你的线程局部变量作为key的键值对。

threadLocal set方法:

    

createMap:

threadLocal get方法:

threadLocal remove方法:


源码
  1 /*
  2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
  3  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
  4  *
  5  *
  6  *
  7  *
  8  *
  9  *
 10  *
 11  *
 12  *
 13  *
 14  *
 15  *
 16  *
 17  *
 18  *
 19  *
 20  *
 21  *
 22  *
 23  *
 24  */
 25 
 26 package java.lang;
 27 import jdk.internal.misc.TerminatingThreadLocal;
 28 
 29 import java.lang.ref.*;
 30 import java.util.Objects;
 31 import java.util.concurrent.atomic.AtomicInteger;
 32 import java.util.function.Supplier;
 33 
 34 /**
 35  * This class provides thread-local variables.  These variables differ from
 36  * their normal counterparts in that each thread that accesses one (via its
 37  * {@code get} or {@code set} method) has its own, independently initialized
 38  * copy of the variable.  {@code ThreadLocal} instances are typically private
 39  * static fields in classes that wish to associate state with a thread (e.g.,
 40  * a user ID or Transaction ID).
 41  *
 42  * <p>For example, the class below generates unique identifiers local to each
 43  * thread.
 44  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
 45  * and remains unchanged on subsequent calls.
 46  * <pre>
 47  * import java.util.concurrent.atomic.AtomicInteger;
 48  *
 49  * public class ThreadId {
 50  *     // Atomic integer containing the next thread ID to be assigned
 51  *     private static final AtomicInteger nextId = new AtomicInteger(0);
 52  *
 53  *     // Thread local variable containing each thread's ID
 54  *     private static final ThreadLocal&lt;Integer&gt; threadId =
 55  *         new ThreadLocal&lt;Integer&gt;() {
 56  *             &#64;Override protected Integer initialValue() {
 57  *                 return nextId.getAndIncrement();
 58  *         }
 59  *     };
 60  *
 61  *     // Returns the current thread's unique ID, assigning it if necessary
 62  *     public static int get() {
 63  *         return threadId.get();
 64  *     }
 65  * }
 66  * </pre>
 67  * <p>Each thread holds an implicit reference to its copy of a thread-local
 68  * variable as long as the thread is alive and the {@code ThreadLocal}
 69  * instance is accessible; after a thread goes away, all of its copies of
 70  * thread-local instances are subject to garbage collection (unless other
 71  * references to these copies exist).
 72  *
 73  * @author  Josh Bloch and Doug Lea
 74  * @since   1.2
 75  */
 76 public class ThreadLocal<T> {
 77     /**
 78      * ThreadLocals rely on per-thread linear-probe hash maps attached
 79      * to each thread (Thread.threadLocals and
 80      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
 81      * searched via threadLocalHashCode.  This is a custom hash code
 82      * (useful only within ThreadLocalMaps) that eliminates collisions
 83      * in the common case where consecutively constructed ThreadLocals
 84      * are used by the same threads, while remaining well-behaved in
 85      * less common cases.
 86      */
 87     private final int threadLocalHashCode = nextHashCode();
 88 
 89     /**
 90      * The next hash code to be given out. Updated atomically. Starts at
 91      * zero.
 92      */
 93     private static AtomicInteger nextHashCode =
 94         new AtomicInteger();
 95 
 96     /**
 97      * The difference between successively generated hash codes - turns
 98      * implicit sequential thread-local IDs into near-optimally spread
 99      * multiplicative hash values for power-of-two-sized tables.
100      */
101     private static final int HASH_INCREMENT = 0x61c88647;
102 
103     /**
104      * Returns the next hash code.
105      */
106     private static int nextHashCode() {
107         return nextHashCode.getAndAdd(HASH_INCREMENT);
108     }
109 
110     /**
111      * Returns the current thread's "initial value" for this
112      * thread-local variable.  This method will be invoked the first
113      * time a thread accesses the variable with the {@link #get}
114      * method, unless the thread previously invoked the {@link #set}
115      * method, in which case the {@code initialValue} method will not
116      * be invoked for the thread.  Normally, this method is invoked at
117      * most once per thread, but it may be invoked again in case of
118      * subsequent invocations of {@link #remove} followed by {@link #get}.
119      *
120      * <p>This implementation simply returns {@code null}; if the
121      * programmer desires thread-local variables to have an initial
122      * value other than {@code null}, {@code ThreadLocal} must be
123      * subclassed, and this method overridden.  Typically, an
124      * anonymous inner class will be used.
125      *
126      * @return the initial value for this thread-local
127      */
128     protected T initialValue() {
129         return null;
130     }
131 
132     /**
133      * Creates a thread local variable. The initial value of the variable is
134      * determined by invoking the {@code get} method on the {@code Supplier}.
135      *
136      * @param <S> the type of the thread local's value
137      * @param supplier the supplier to be used to determine the initial value
138      * @return a new thread local variable
139      * @throws NullPointerException if the specified supplier is null
140      * @since 1.8
141      */
142     public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
143         return new SuppliedThreadLocal<>(supplier);
144     }
145 
146     /**
147      * Creates a thread local variable.
148      * @see #withInitial(java.util.function.Supplier)
149      */
150     public ThreadLocal() {
151     }
152 
153     /**
154      * Returns the value in the current thread's copy of this
155      * thread-local variable.  If the variable has no value for the
156      * current thread, it is first initialized to the value returned
157      * by an invocation of the {@link #initialValue} method.
158      *
159      * @return the current thread's value of this thread-local
160      */
161     public T get() {
162         Thread t = Thread.currentThread();
163         ThreadLocalMap map = getMap(t);
164         if (map != null) {
165             ThreadLocalMap.Entry e = map.getEntry(this);
166             if (e != null) {
167                 @SuppressWarnings("unchecked")
168                 T result = (T)e.value;
169                 return result;
170             }
171         }
172         return setInitialValue();
173     }
174 
175     /**
176      * Returns {@code true} if there is a value in the current thread's copy of
177      * this thread-local variable, even if that values is {@code null}.
178      *
179      * @return {@code true} if current thread has associated value in this
180      *         thread-local variable; {@code false} if not
181      */
182     boolean isPresent() {
183         Thread t = Thread.currentThread();
184         ThreadLocalMap map = getMap(t);
185         return map != null && map.getEntry(this) != null;
186     }
187 
188     /**
189      * Variant of set() to establish initialValue. Used instead
190      * of set() in case user has overridden the set() method.
191      *
192      * @return the initial value
193      */
194     private T setInitialValue() {
195         T value = initialValue();
196         Thread t = Thread.currentThread();
197         ThreadLocalMap map = getMap(t);
198         if (map != null) {
199             map.set(this, value);
200         } else {
201             createMap(t, value);
202         }
203         if (this instanceof TerminatingThreadLocal) {
204             TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);
205         }
206         return value;
207     }
208 
209     /**
210      * Sets the current thread's copy of this thread-local variable
211      * to the specified value.  Most subclasses will have no need to
212      * override this method, relying solely on the {@link #initialValue}
213      * method to set the values of thread-locals.
214      *
215      * @param value the value to be stored in the current thread's copy of
216      *        this thread-local.
217      */
218     public void set(T value) {
219         Thread t = Thread.currentThread();
220         ThreadLocalMap map = getMap(t);
221         if (map != null) {
222             map.set(this, value);
223         } else {
224             createMap(t, value);
225         }
226     }
227 
228     /**
229      * Removes the current thread's value for this thread-local
230      * variable.  If this thread-local variable is subsequently
231      * {@linkplain #get read} by the current thread, its value will be
232      * reinitialized by invoking its {@link #initialValue} method,
233      * unless its value is {@linkplain #set set} by the current thread
234      * in the interim.  This may result in multiple invocations of the
235      * {@code initialValue} method in the current thread.
236      *
237      * @since 1.5
238      */
239      public void remove() {
240          ThreadLocalMap m = getMap(Thread.currentThread());
241          if (m != null) {
242              m.remove(this);
243          }
244      }
245 
246     /**
247      * Get the map associated with a ThreadLocal. Overridden in
248      * InheritableThreadLocal.
249      *
250      * @param  t the current thread
251      * @return the map
252      */
253     ThreadLocalMap getMap(Thread t) {
254         return t.threadLocals;
255     }
256 
257     /**
258      * Create the map associated with a ThreadLocal. Overridden in
259      * InheritableThreadLocal.
260      *
261      * @param t the current thread
262      * @param firstValue value for the initial entry of the map
263      */
264     void createMap(Thread t, T firstValue) {
265         t.threadLocals = new ThreadLocalMap(this, firstValue);
266     }
267 
268     /**
269      * Factory method to create map of inherited thread locals.
270      * Designed to be called only from Thread constructor.
271      *
272      * @param  parentMap the map associated with parent thread
273      * @return a map containing the parent's inheritable bindings
274      */
275     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
276         return new ThreadLocalMap(parentMap);
277     }
278 
279     /**
280      * Method childValue is visibly defined in subclass
281      * InheritableThreadLocal, but is internally defined here for the
282      * sake of providing createInheritedMap factory method without
283      * needing to subclass the map class in InheritableThreadLocal.
284      * This technique is preferable to the alternative of embedding
285      * instanceof tests in methods.
286      */
287     T childValue(T parentValue) {
288         throw new UnsupportedOperationException();
289     }
290 
291     /**
292      * An extension of ThreadLocal that obtains its initial value from
293      * the specified {@code Supplier}.
294      */
295     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
296 
297         private final Supplier<? extends T> supplier;
298 
299         SuppliedThreadLocal(Supplier<? extends T> supplier) {
300             this.supplier = Objects.requireNonNull(supplier);
301         }
302 
303         @Override
304         protected T initialValue() {
305             return supplier.get();
306         }
307     }
308 
309     /**
310      * ThreadLocalMap is a customized hash map suitable only for
311      * maintaining thread local values. No operations are exported
312      * outside of the ThreadLocal class. The class is package private to
313      * allow declaration of fields in class Thread.  To help deal with
314      * very large and long-lived usages, the hash table entries use
315      * WeakReferences for keys. However, since reference queues are not
316      * used, stale entries are guaranteed to be removed only when
317      * the table starts running out of space.
318      */
319     static class ThreadLocalMap {
320 
321         /**
322          * The entries in this hash map extend WeakReference, using
323          * its main ref field as the key (which is always a
324          * ThreadLocal object).  Note that null keys (i.e. entry.get()
325          * == null) mean that the key is no longer referenced, so the
326          * entry can be expunged from table.  Such entries are referred to
327          * as "stale entries" in the code that follows.
328          */
329         static class Entry extends WeakReference<ThreadLocal<?>> {
330             /** The value associated with this ThreadLocal. */
331             Object value;
332 
333             Entry(ThreadLocal<?> k, Object v) {
334                 super(k);
335                 value = v;
336             }
337         }
338 
339         /**
340          * The initial capacity -- MUST be a power of two.
341          */
342         private static final int INITIAL_CAPACITY = 16;
343 
344         /**
345          * The table, resized as necessary.
346          * table.length MUST always be a power of two.
347          */
348         private Entry[] table;
349 
350         /**
351          * The number of entries in the table.
352          */
353         private int size = 0;
354 
355         /**
356          * The next size value at which to resize.
357          */
358         private int threshold; // Default to 0
359 
360         /**
361          * Set the resize threshold to maintain at worst a 2/3 load factor.
362          */
363         private void setThreshold(int len) {
364             threshold = len * 2 / 3;
365         }
366 
367         /**
368          * Increment i modulo len.
369          */
370         private static int nextIndex(int i, int len) {
371             return ((i + 1 < len) ? i + 1 : 0);
372         }
373 
374         /**
375          * Decrement i modulo len.
376          */
377         private static int prevIndex(int i, int len) {
378             return ((i - 1 >= 0) ? i - 1 : len - 1);
379         }
380 
381         /**
382          * Construct a new map initially containing (firstKey, firstValue).
383          * ThreadLocalMaps are constructed lazily, so we only create
384          * one when we have at least one entry to put in it.
385          */
386         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
387             table = new Entry[INITIAL_CAPACITY];
388             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
389             table[i] = new Entry(firstKey, firstValue);
390             size = 1;
391             setThreshold(INITIAL_CAPACITY);
392         }
393 
394         /**
395          * Construct a new map including all Inheritable ThreadLocals
396          * from given parent map. Called only by createInheritedMap.
397          *
398          * @param parentMap the map associated with parent thread.
399          */
400         private ThreadLocalMap(ThreadLocalMap parentMap) {
401             Entry[] parentTable = parentMap.table;
402             int len = parentTable.length;
403             setThreshold(len);
404             table = new Entry[len];
405 
406             for (Entry e : parentTable) {
407                 if (e != null) {
408                     @SuppressWarnings("unchecked")
409                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
410                     if (key != null) {
411                         Object value = key.childValue(e.value);
412                         Entry c = new Entry(key, value);
413                         int h = key.threadLocalHashCode & (len - 1);
414                         while (table[h] != null)
415                             h = nextIndex(h, len);
416                         table[h] = c;
417                         size++;
418                     }
419                 }
420             }
421         }
422 
423         /**
424          * Get the entry associated with key.  This method
425          * itself handles only the fast path: a direct hit of existing
426          * key. It otherwise relays to getEntryAfterMiss.  This is
427          * designed to maximize performance for direct hits, in part
428          * by making this method readily inlinable.
429          *
430          * @param  key the thread local object
431          * @return the entry associated with key, or null if no such
432          */
433         private Entry getEntry(ThreadLocal<?> key) {
434             int i = key.threadLocalHashCode & (table.length - 1);
435             Entry e = table[i];
436             if (e != null && e.get() == key)
437                 return e;
438             else
439                 return getEntryAfterMiss(key, i, e);
440         }
441 
442         /**
443          * Version of getEntry method for use when key is not found in
444          * its direct hash slot.
445          *
446          * @param  key the thread local object
447          * @param  i the table index for key's hash code
448          * @param  e the entry at table[i]
449          * @return the entry associated with key, or null if no such
450          */
451         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
452             Entry[] tab = table;
453             int len = tab.length;
454 
455             while (e != null) {
456                 ThreadLocal<?> k = e.get();
457                 if (k == key)
458                     return e;
459                 if (k == null)
460                     expungeStaleEntry(i);
461                 else
462                     i = nextIndex(i, len);
463                 e = tab[i];
464             }
465             return null;
466         }
467 
468         /**
469          * Set the value associated with key.
470          *
471          * @param key the thread local object
472          * @param value the value to be set
473          */
474         private void set(ThreadLocal<?> key, Object value) {
475 
476             // We don't use a fast path as with get() because it is at
477             // least as common to use set() to create new entries as
478             // it is to replace existing ones, in which case, a fast
479             // path would fail more often than not.
480 
481             Entry[] tab = table;
482             int len = tab.length;
483             int i = key.threadLocalHashCode & (len-1);
484 
485             for (Entry e = tab[i];
486                  e != null;
487                  e = tab[i = nextIndex(i, len)]) {
488                 ThreadLocal<?> k = e.get();
489 
490                 if (k == key) {
491                     e.value = value;
492                     return;
493                 }
494 
495                 if (k == null) {
496                     replaceStaleEntry(key, value, i);
497                     return;
498                 }
499             }
500 
501             tab[i] = new Entry(key, value);
502             int sz = ++size;
503             if (!cleanSomeSlots(i, sz) && sz >= threshold)
504                 rehash();
505         }
506 
507         /**
508          * Remove the entry for key.
509          */
510         private void remove(ThreadLocal<?> key) {
511             Entry[] tab = table;
512             int len = tab.length;
513             int i = key.threadLocalHashCode & (len-1);
514             for (Entry e = tab[i];
515                  e != null;
516                  e = tab[i = nextIndex(i, len)]) {
517                 if (e.get() == key) {
518                     e.clear();
519                     expungeStaleEntry(i);
520                     return;
521                 }
522             }
523         }
524 
525         /**
526          * Replace a stale entry encountered during a set operation
527          * with an entry for the specified key.  The value passed in
528          * the value parameter is stored in the entry, whether or not
529          * an entry already exists for the specified key.
530          *
531          * As a side effect, this method expunges all stale entries in the
532          * "run" containing the stale entry.  (A run is a sequence of entries
533          * between two null slots.)
534          *
535          * @param  key the key
536          * @param  value the value to be associated with key
537          * @param  staleSlot index of the first stale entry encountered while
538          *         searching for key.
539          */
540         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
541                                        int staleSlot) {
542             Entry[] tab = table;
543             int len = tab.length;
544             Entry e;
545 
546             // Back up to check for prior stale entry in current run.
547             // We clean out whole runs at a time to avoid continual
548             // incremental rehashing due to garbage collector freeing
549             // up refs in bunches (i.e., whenever the collector runs).
550             int slotToExpunge = staleSlot;
551             for (int i = prevIndex(staleSlot, len);
552                  (e = tab[i]) != null;
553                  i = prevIndex(i, len))
554                 if (e.get() == null)
555                     slotToExpunge = i;
556 
557             // Find either the key or trailing null slot of run, whichever
558             // occurs first
559             for (int i = nextIndex(staleSlot, len);
560                  (e = tab[i]) != null;
561                  i = nextIndex(i, len)) {
562                 ThreadLocal<?> k = e.get();
563 
564                 // If we find key, then we need to swap it
565                 // with the stale entry to maintain hash table order.
566                 // The newly stale slot, or any other stale slot
567                 // encountered above it, can then be sent to expungeStaleEntry
568                 // to remove or rehash all of the other entries in run.
569                 if (k == key) {
570                     e.value = value;
571 
572                     tab[i] = tab[staleSlot];
573                     tab[staleSlot] = e;
574 
575                     // Start expunge at preceding stale entry if it exists
576                     if (slotToExpunge == staleSlot)
577                         slotToExpunge = i;
578                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
579                     return;
580                 }
581 
582                 // If we didn't find stale entry on backward scan, the
583                 // first stale entry seen while scanning for key is the
584                 // first still present in the run.
585                 if (k == null && slotToExpunge == staleSlot)
586                     slotToExpunge = i;
587             }
588 
589             // If key not found, put new entry in stale slot
590             tab[staleSlot].value = null;
591             tab[staleSlot] = new Entry(key, value);
592 
593             // If there are any other stale entries in run, expunge them
594             if (slotToExpunge != staleSlot)
595                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
596         }
597 
598         /**
599          * Expunge a stale entry by rehashing any possibly colliding entries
600          * lying between staleSlot and the next null slot.  This also expunges
601          * any other stale entries encountered before the trailing null.  See
602          * Knuth, Section 6.4
603          *
604          * @param staleSlot index of slot known to have null key
605          * @return the index of the next null slot after staleSlot
606          * (all between staleSlot and this slot will have been checked
607          * for expunging).
608          */
609         private int expungeStaleEntry(int staleSlot) {
610             Entry[] tab = table;
611             int len = tab.length;
612 
613             // expunge entry at staleSlot
614             tab[staleSlot].value = null;
615             tab[staleSlot] = null;
616             size--;
617 
618             // Rehash until we encounter null
619             Entry e;
620             int i;
621             for (i = nextIndex(staleSlot, len);
622                  (e = tab[i]) != null;
623                  i = nextIndex(i, len)) {
624                 ThreadLocal<?> k = e.get();
625                 if (k == null) {
626                     e.value = null;
627                     tab[i] = null;
628                     size--;
629                 } else {
630                     int h = k.threadLocalHashCode & (len - 1);
631                     if (h != i) {
632                         tab[i] = null;
633 
634                         // Unlike Knuth 6.4 Algorithm R, we must scan until
635                         // null because multiple entries could have been stale.
636                         while (tab[h] != null)
637                             h = nextIndex(h, len);
638                         tab[h] = e;
639                     }
640                 }
641             }
642             return i;
643         }
644 
645         /**
646          * Heuristically scan some cells looking for stale entries.
647          * This is invoked when either a new element is added, or
648          * another stale one has been expunged. It performs a
649          * logarithmic number of scans, as a balance between no
650          * scanning (fast but retains garbage) and a number of scans
651          * proportional to number of elements, that would find all
652          * garbage but would cause some insertions to take O(n) time.
653          *
654          * @param i a position known NOT to hold a stale entry. The
655          * scan starts at the element after i.
656          *
657          * @param n scan control: {@code log2(n)} cells are scanned,
658          * unless a stale entry is found, in which case
659          * {@code log2(table.length)-1} additional cells are scanned.
660          * When called from insertions, this parameter is the number
661          * of elements, but when from replaceStaleEntry, it is the
662          * table length. (Note: all this could be changed to be either
663          * more or less aggressive by weighting n instead of just
664          * using straight log n. But this version is simple, fast, and
665          * seems to work well.)
666          *
667          * @return true if any stale entries have been removed.
668          */
669         private boolean cleanSomeSlots(int i, int n) {
670             boolean removed = false;
671             Entry[] tab = table;
672             int len = tab.length;
673             do {
674                 i = nextIndex(i, len);
675                 Entry e = tab[i];
676                 if (e != null && e.get() == null) {
677                     n = len;
678                     removed = true;
679                     i = expungeStaleEntry(i);
680                 }
681             } while ( (n >>>= 1) != 0);
682             return removed;
683         }
684 
685         /**
686          * Re-pack and/or re-size the table. First scan the entire
687          * table removing stale entries. If this doesn't sufficiently
688          * shrink the size of the table, double the table size.
689          */
690         private void rehash() {
691             expungeStaleEntries();
692 
693             // Use lower threshold for doubling to avoid hysteresis
694             if (size >= threshold - threshold / 4)
695                 resize();
696         }
697 
698         /**
699          * Double the capacity of the table.
700          */
701         private void resize() {
702             Entry[] oldTab = table;
703             int oldLen = oldTab.length;
704             int newLen = oldLen * 2;
705             Entry[] newTab = new Entry[newLen];
706             int count = 0;
707 
708             for (Entry e : oldTab) {
709                 if (e != null) {
710                     ThreadLocal<?> k = e.get();
711                     if (k == null) {
712                         e.value = null; // Help the GC
713                     } else {
714                         int h = k.threadLocalHashCode & (newLen - 1);
715                         while (newTab[h] != null)
716                             h = nextIndex(h, newLen);
717                         newTab[h] = e;
718                         count++;
719                     }
720                 }
721             }
722 
723             setThreshold(newLen);
724             size = count;
725             table = newTab;
726         }
727 
728         /**
729          * Expunge all stale entries in the table.
730          */
731         private void expungeStaleEntries() {
732             Entry[] tab = table;
733             int len = tab.length;
734             for (int j = 0; j < len; j++) {
735                 Entry e = tab[j];
736                 if (e != null && e.get() == null)
737                     expungeStaleEntry(j);
738             }
739         }
740     }
741 }
View Code

 

ThreadLocal为什么会内存泄漏?

ThreadLocal的实现是这样的:每个Thread 维护一个 ThreadLocalMap 映射表,这个映射表的 key 是 ThreadLocal实例本身,value 是真正需要存储的 Object。
也就是说 ThreadLocal 本身并不存储值,它只是作为一个 key 来让线程从 ThreadLocalMap 获取 value。
值得注意的是图中的虚线,表示 ThreadLocalMap 是使用 ThreadLocal 的弱引用作为 Key 的,弱引用的对象在 GC 时会被回收。

ThreadLocalMap使用ThreadLocal的弱引用作为key,如果一个ThreadLocal没有外部强引用来引用它,那么系统 GC 的时候,这个ThreadLocal势必会被回收,这样一来,ThreadLocalMap中就会出现key为null的Entry,就没有办法访问这些key为null的Entry的value,如果当前线程再迟迟不结束的话,这些key为null的Entry的value就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远无法回收,造成内存泄漏。

ThreadLocal如何防止内存泄漏?
每次使用完ThreadLocal,都调用它的remove()方法,清除数据。
在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就需要清理。

原文链接

posted @ 2021-04-20 16:41  一人一见  阅读(349)  评论(0编辑  收藏  举报