Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
more practice是搞笑的。
还有更简单的方法,懒得改了。事实证明看书太多也不好。
class Solution {
public:
int maxSubArray(int A[], int n) {
vector<int> sum;
if(n == 0)return 0;
int maxsum =A[0];
sum.push_back(A[0]);
for(int i = 1 ; i < n ; i++)
{
int temp = sum[i-1]+A[i];
if(temp > maxsum)maxsum = temp;
sum.push_back(temp);
}
int min = 0;
for(int i = 1 ; i < n;i++)
{
if(sum[i] - sum[min] > maxsum)
maxsum = sum[i] - sum[min];
if(sum[i] < sum[min])min = i;
}
return maxsum;
}
};
posted on 2014-03-11 22:56 pengyu2003 阅读(158) 评论(0) 收藏 举报
浙公网安备 33010602011771号