随笔分类 - 数据挖掘
摘要:自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理/机器学习算法工程师,或简称算法工程师,还有的称为搜索/推荐算法工程师,甚至有的并入后台工程师的范畴,视岗位具体要求而定。机器学习、大数据相关岗位的职责自己...
阅读全文
摘要:GBDT(GradientBoostingDecisionTree)又叫MART(MultipleAdditiveRegressionTree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalizati...
阅读全文
摘要:交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证是一种评估统计分析、机器学习算法对独...
阅读全文
摘要:一、roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)纵...
阅读全文
摘要:EdgeRank 是今年 Facebook 在 F8 开发者大会上提出的对 fb 新鲜事 (Feeds) 排序的新算法, 用于区别默认的按时间逆序的 timeline. 不像 PageRank 还有很多论文或学术界的资料,目前没有什么官方资料讨论 EdgeRank, 搜到的资料大部分来自在线广告代理...
阅读全文
摘要:【摘要】 - 生成模型:无穷样本==》概率密度模型 = 产生模型==》预测 - 判别模型:有限样本==》判别函数 = 预测模型==》预测【简介】简单的说,假设o是观察值,q是模型。如果对P(o|q)建模,就是Generative模型。其基本思想是首先建立样本的概率密度模型,再利用模型进行推理预测。要...
阅读全文
摘要:前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明、更个性化的技术。 也许我们生活在人类历史上最关键的时期:从使用大型计算机,到个人电脑,再到现在的云计算。关键的不是过去发生了什么,而是将来会有什么发生。 工具和技术
阅读全文
摘要:K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签...
阅读全文
摘要:1、C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2)在树构造过程中进行剪枝;3)能够完成对连续属性的离散...
阅读全文
摘要:EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f...
阅读全文
摘要:阅读目录1 什么是随机森林?2 随机森林的特点3 随机森林的相关基础知识4 随机森林的生成5 袋外错误率(oob error)6 随机森林工作原理解释的一个简单例子7 随机森林的Python实现8 参考内容回到顶部1 什么是随机森林? 作为新兴起的、高度灵活的一种机器学习算法,随机森林(Rando...
阅读全文
摘要:决策树决策树又称为判定树,是运用于分类的一种树结构,其中的每个内部节点代表对某一属性的一次测试,每条边代表一个测试结果,叶节点代表某个类或类的分布。决策树的决策过程需要从决策树的根节点开始,待测数据与决策树中的特征节点进行比较,并按照比较结果选择选择下一比较分支,直到叶子节点作为最终的决策结果。决策...
阅读全文
摘要:很早就对Google的PageRank算法很感兴趣,但一直没有深究,只有个轮廓性的概念。前几天趁团队outing的机会,在动车上看了一些相关的资料(PS:在动车上看看书真是一种享受),趁热打铁,将所看的东西整理成此文。本文首先会讨论搜索引擎的核心难题,同时讨论早期搜索引擎关于结果页面重要性评价算法的...
阅读全文
摘要:逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛。本文作为美团机器学习InAction系列中的一篇, 主要关注逻辑回归算法的数学模型和参数求解方法,最后也会简单讨论下逻辑回归和贝叶斯分类的关系,以及在多分类问题上的推广。逻辑回归...
阅读全文
摘要:数学之美--上对人工神经网络的通俗解释很形象:0. 分类神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,咱们先看几个例子:垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。疾病判断:病人到医院去做了一大堆肝功、尿检测验,...
阅读全文
摘要:以下是摘抄自知乎上对监督学习与非监督学习的总结,觉得写得很形象,于是记下:这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高...
阅读全文

浙公网安备 33010602011771号