2010年12月27日
摘要: (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accurac... 阅读全文
posted @ 2010-12-27 15:50 Tony Ma 阅读(573) 评论(1) 推荐(0)
摘要: 前文提到过,除了开方检验(CHI)以外,信息增益(IG,Information Gain)也是很有效的特征选择方法。但凡是特征选择,总是在将特征的重要程度量化之后再进行选择,而如何量化特征的重要性,就成了各种方法间最大的不同。开方检验中使用特征与类别间的关联性来进行这个量化,关联性越强,特征得分越高,该特征越应该被保留。 在信息增益中,重要性的衡量标准就是看特征能够为分类系统带来多少信息,带来的... 阅读全文
posted @ 2010-12-27 15:48 Tony Ma 阅读(928) 评论(0) 推荐(0)