$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Self-defined math definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Math symbol commands \newcommand{\intd}{\,{\rm d}} % Symbol 'd' used in integration, such as 'dx' \newcommand{\diff}{{\rm d}} % Symbol 'd' used in differentiation \newcommand{\Diff}{{\rm D}} % Symbol 'D' used in differentiation \newcommand{\pdiff}{\partial} % Partial derivative \newcommand{DD}[2]{\frac{\diff}{\diff #2}\left( #1 \right)} \newcommand{Dd}[2]{\frac{\diff #1}{\diff #2}} \newcommand{PD}[2]{\frac{\pdiff}{\pdiff #2}\left( #1 \right)} \newcommand{Pd}[2]{\frac{\pdiff #1}{\pdiff #2}} \newcommand{\rme}{{\rm e}} % Exponential e \newcommand{\rmi}{{\rm i}} % Imaginary unit i \newcommand{\rmj}{{\rm j}} % Imaginary unit j \newcommand{\vect}[1]{\boldsymbol{#1}} % Vector typeset in bold and italic \newcommand{\phs}[1]{\dot{#1}} % Scalar phasor \newcommand{\phsvect}[1]{\boldsymbol{\dot{#1}}} % Vector phasor \newcommand{\normvect}{\vect{n}} % Normal vector: n \newcommand{\dform}[1]{\overset{\rightharpoonup}{\boldsymbol{#1}}} % Vector for differential form \newcommand{\cochain}[1]{\overset{\rightharpoonup}{#1}} % Vector for cochain \newcommand{\bigabs}[1]{\bigg\lvert#1\bigg\rvert} % Absolute value (single big vertical bar) \newcommand{\Abs}[1]{\big\lvert#1\big\rvert} % Absolute value (single big vertical bar) \newcommand{\abs}[1]{\lvert#1\rvert} % Absolute value (single vertical bar) \newcommand{\bignorm}[1]{\bigg\lVert#1\bigg\rVert} % Norm (double big vertical bar) \newcommand{\Norm}[1]{\big\lVert#1\big\rVert} % Norm (double big vertical bar) \newcommand{\norm}[1]{\lVert#1\rVert} % Norm (double vertical bar) \newcommand{\ouset}[3]{\overset{#3}{\underset{#2}{#1}}} % over and under set % Super/subscript for column index of a matrix, which is used in tensor analysis. \newcommand{\cscript}[1]{\;\; #1} % Star symbol used as prefix in front of a paragraph with no indent \newcommand{\prefstar}{\noindent$\ast$ } % Big vertical line restricting the function. % Example: $u(x)\restrict_{\Omega_0}$ \newcommand{\restrict}{\big\vert} % Math operators which are typeset in Roman font \DeclareMathOperator{\sgn}{sgn} % Sign function \DeclareMathOperator{\erf}{erf} % Error function \DeclareMathOperator{\Bd}{Bd} % Boundary of a set, used in topology \DeclareMathOperator{\Int}{Int} % Interior of a set, used in topology \DeclareMathOperator{\rank}{rank} % Rank of a matrix \DeclareMathOperator{\divergence}{div} % Curl \DeclareMathOperator{\curl}{curl} % Curl \DeclareMathOperator{\grad}{grad} % Gradient \DeclareMathOperator{\tr}{tr} % Trace \DeclareMathOperator{\span}{span} % Span $$

止于至善

As regards numerical analysis and mathematical electromagnetism

James Munkres Topology: Sec 22 Example 1

Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subspace \([0,2]\) of \(\mathbb{R}\). The map \(p: X \rightarrow Y\) defined by
\[
p(x)=\begin{cases}
x & \text{for}\; x \in [0,1],\\
x-1 & \text{for}\; x \in [2,3]
\end{cases}
\]
is a closed map thus a quotient map, but not open.

Proof (a) \(p\) is surjective is obvious.

(b) Prove \(p\) is continuous.

\(p\) is a piecewise function comprised of two parts \(p_1 = x\) with \(x \in [0,1])\) and \(p_2=x-1\) with \(x\in[2,3]\). We extend the domains and ranges of \(p_1\) and \(p_2\) to \(\mathbb{R}\) and obtain two continuous functions \(\tilde{p}_1\) and \(\tilde{p}_2\). According to Theorem 18.2 (d) and (e), as the restrictions of \(\tilde{p}_1\) and \(\tilde{p}_2\), \(p_1\) and \(p_2\) are continuous. Because \(X\) comprises two disjoint parts \([0,1]\) and \([2,3]\), both of them are both open and closed in \(X\). By treating them as open sets, according to Theorem 18.2 (f) the local formulation of continuity, \(p\) is continuous. Or if we treat \([0,1]\) and \([2,3]\) as closed sets, according to Theorem 18.3 the pasting lemma, \(p\) is also continuous.

Comment To prove the continuity of a piecewise function, it is very cumbersome if we start the proof from the raw definition of continuity, which will involve lots of cases for discussion. The appropriate way is to use Theorem 18.2 and Theorem 18.3, especially extensions and restriction of function's domain and range.

(c) Prove \(p\) is a closed map, thus a quotient map.

It is obvious to see that \(\tilde{p}_1\) is an identity map and \(\tilde{p}_2\) is a merely a translation. Both of them are closed maps. For a closed set \(C\) in \(X\), there exists a closed set \(C'\) in \(\mathbb{R}\) such that \(C = C'\cap X\). The image of \(C\) under \(p\) is
\[
\begin{aligned}
p(C) &= p(C'\cap X) = p(C' \cap ([0,1] \cup [2,3])) \\
&= p\left( (C'\cap[0,1]) \cup (C'\cap[2,3]) \right) \\
&= p(C'\cap[0,1]) \cup p(C'\cap[2,3])
\end{aligned}.
\]
According to Theorem 17.2, both \(C'\cap[0,1]\) and \(C'\cap[2,3]\) are closed in \(\mathbb{R}\). Meanwhile, we have \(p(C'\cap[0,1])=\tilde{p}_1(C'\cap[0,1])\) and \(p(C'\cap[2,3])=\tilde{p}_2(C'\cap[2,3])\), both of which are closed in \(\mathbb{R}\) because \(\tilde{p}_1\) and \(\tilde{p}_2\) are closed maps. Because \(Y\) is closed in \(\mathbb{R}\), by applying Theorem 17.2 again, \(p(C'\cap[0,1]) \) and \(p(C'\cap[2,3])\) are closed in \(Y\), so is their union \(p(C)\). Hence, \(p\) is a closed map.

(d) Prove \(p\) is not an open map.

\([0,1]\) is open in \(X\) but \(p([0,1])=[0,1]\), which is closed in \(Y\). Therefore, \(p\) is not an open map.

posted @ 2019-02-09 18:51  皮波迪博士  阅读(352)  评论(0编辑  收藏  举报