import pandas as pd
import tensorflow as tf
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
# CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']
# CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,LBS,house'.split(',')
CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,house'.split(',')
# SPECIES = ['Setosa', 'Versicolor', 'Virginica']
# label,age,gender,education,consumptionAbility,LBS,house
# label,age,gender,education,consumptionAbility,LBS,house
SPECIES = [0, 1]
#SPECIES = [1, 0]
def maybe_download():
# train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
# test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
#
# return train_path, test_path
# return 'iris_training.csv', 'iris_test.csv'
return 'myu_oriv_tB.csv', 'myu_oriv_rB.csv'
# def load_data(label_name='Species'):
def load_data(label_name='label'):
train_path, test_path = maybe_download()
"""Parses the csv file in TRAIN_URL and TEST_URL."""
# Create a local copy of the training set.
# train_path = tf.keras.utils.get_file(fname=TRAIN_URL.split('/')[-1],
# origin=TRAIN_URL)
# train_path now holds the pathname: ~/.keras/datasets/iris_training.csv
# Parse the local CSV file.
train = pd.read_csv(filepath_or_buffer=train_path,
names=CSV_COLUMN_NAMES, # list of column names
header=0 # ignore the first row of the CSV file.
)
# train now holds a pandas DataFrame, which is data structure
# analogous to a table.
# 1. Assign the DataFrame's labels (the right-most column) to train_label.
# 2. Delete (pop) the labels from the DataFrame.
# 3. Assign the remainder of the DataFrame to train_features
# label_name = y_name
train_features, train_label = train, train.pop(label_name)
# Apply the preceding logic to the test set.
# test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
test_features, test_label = test, test.pop(label_name)
# Return four DataFrames.
return (train_features, train_label), (test_features, test_label)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle, repeat, and batch the examples.
# dataset = dataset.shuffle(1000).repeat().batch(batch_size)
dataset = dataset.shuffle(3).repeat().batch(batch_size)
# Return the dataset.
return dataset
def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels)
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs)
# Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size)
# Return the dataset.
return dataset
# The remainder of this file contains a simple example of a csv parser,
# implemented using a the `Dataset` class.
# `tf.parse_csv` sets the types of the outputs to match the examples given in
# the `record_defaults` argument.
# CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]
CSV_TYPES = [[0], [0], [0], [0], [0], [0], [0]]
CSV_TYPES = [[0], [0], [0], [0], [0], [0]]
def _parse_line(line):
# Decode the line into its fields
fields = tf.decode_csv(line, record_defaults=CSV_TYPES)
# Pack the result into a dictionary
features = dict(zip(CSV_COLUMN_NAMES, fields))
# Separate the label from the features
# label = features.pop('Species')
label = features.pop('label')
return features, label
def csv_input_fn(csv_path, batch_size):
# Create a dataset containing the text lines.
dataset = tf.data.TextLineDataset(csv_path).skip(1)
# Parse each line.
dataset = dataset.map(_parse_line)
# Shuffle, repeat, and batch the examples.
# dataset = dataset.shuffle(1000).repeat().batch(batch_size)
dataset = dataset.shuffle(2).repeat().batch(batch_size)
# Return the dataset.
return dataset
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
import qq_iris_data_mystudy
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=2, type=int, help='batch size')
parser.add_argument('--train_steps', default=2, type=int,
help='number of training steps')
res_f = 'res.txt'
with open(res_f, 'w', encoding='utf-8') as fw:
fw.write('')
def main(argv):
args = parser.parse_args(argv[1:])
# Fetch the data
(train_x, train_y), (test_x, test_y) = qq_iris_data_mystudy.load_data()
my_feature_columns, predict_x = [], {}
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
#predict_x[key] = [float(i) for i in test_x[key].values]
predict_x[key] = [int(i) for i in test_x[key].values]
expected = [0 for i in predict_x[key]]
# Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
# Two hidden layers of 10 nodes each.
hidden_units=[10, 10],
# The model must choose between 3 classes.
n_classes=2)
# Train the Model.
classifier.train(
input_fn=lambda: qq_iris_data_mystudy.train_input_fn(train_x, train_y,
args.batch_size),
steps=args.train_steps)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda: qq_iris_data_mystudy.eval_input_fn(test_x, test_y,
args.batch_size))
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
predictions = classifier.predict(
input_fn=lambda: qq_iris_data_mystudy.eval_input_fn(predict_x,
labels=None,
batch_size=args.batch_size))
template = ('\nmyProgress{}/{}ORI{}||RESULT{}|| Prediction is "{}" ({:.1f}%), expected "{}"')
c, c_all_ = 0, len(expected)
for pred_dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id]
ori = ','.join([str(predict_x[k][c]) for k in predict_x])
print(template.format(c, c_all_, ori, str(pred_dict), qq_iris_data_mystudy.SPECIES[class_id],
100 * probability, expec))
c += 1
fw_s = '{}---{}\n'.format(ori,pred_dict['probabilities'][1])
with open(res_f, 'a', encoding='utf-8') as fw:
fw.write(fw_s)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)