时间复杂度和空间复杂度计算
一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。
时间复杂度:
时间复杂度是算法执行语句的次数,当我们面前有多个算法时,我们可以通过计算时间复杂度,判断出哪一个算法在具体执行时花费时间最多和最少。
常见的时间复杂度有:
常数阶O(1),
对数阶O(log2n),
线性阶O(n),
线性对数阶O(n log2n),
平方阶O(n2),
立方阶O(n3)
k次方阶O(nK),
指数阶O(2n)。
随着n的不断增大,时间复杂度不断增大,算法花费时间越多。
1、如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
1 int x=1; 2 while (x <10) 3 { 4 x++; 5 }
执行次数是10,是一个常数,用时间复杂度表示是O(1)。
2、当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { ; } }
最外层循环每执行一次,内层循环都要执行n次,执行次数是根据n所决定的,时间复杂度是O(n^2)。
3、循环不仅与n有关,还与执行循环所满足的判断条件有关。
1 int i=0; 2 while (i < n && arr[i]!=1) 3 { 4 i++; 5 }
在此循环,如果arr[i]不等于1的话,时间复杂度是O(n)。如果arr[i]等于1的话,则循环不能执行,时间复杂度是0。
空间复杂度
一个算法在运行过程中临时占用存储空间大小的量度。
计算方法:
①忽略常数,用O(1)表示
②递归算法的空间复杂度=递归深度N*每次递归所要的辅助空间
③对于单线程来说,递归有运行时堆栈,求的是递归最深的那一次压栈所耗费的空间的个数,因为递归最深的那一次所耗费的空间足以容纳它所有递归过程。