摘要:
在迁移学习/领域自适应中,我们常常需要寻找领域不变的表征(Domain-invariant Representation),这种表示可被认为是学习到各领域之间的共性,并基于此共性进行迁移。而获取这个表征的过程就与深度学习中的“表征学习”联系紧密。生成模型,自监督学习/对比学习和最近流行的因果表征学习都可以视为获取良好的领域不变表征的工具。 阅读全文
在迁移学习/领域自适应中,我们常常需要寻找领域不变的表征(Domain-invariant Representation),这种表示可被认为是学习到各领域之间的共性,并基于此共性进行迁移。而获取这个表征的过程就与深度学习中的“表征学习”联系紧密。生成模型,自监督学习/对比学习和最近流行的因果表征学习都可以视为获取良好的领域不变表征的工具。 阅读全文
posted @ 2022-09-26 01:18
orion-orion
阅读(1675)
评论(0)
推荐(2)

浙公网安备 33010602011771号