(原創) 如何产生Yokoi Connectivity Number? (.NET) (C++/CLI) (C/C++) (Image Processing)
本范例先将leng.jpg轉成binary image,然後从512*512 downsampling成64*64,downsampling的规则为以8*8为unit,取topmost-left为downsampled data,最后产生Yokoi Connectivity Number。
1
/*
2
(C) OOMusou 2006 http://oomusou.cnblogs.com
3
4
Filename : memset1.cpp
5
Compiler : Visual C++ 8.0
6
Description : Demo how to produce Yokoi connectivity number
7
Release : 12/06/2006
8
*/
9
10
#include "stdafx.h"
11
#include <fstream>
12
#include <iostream>
13
14
using namespace System::Drawing;
15
using namespace System::Drawing::Imaging;
16
17
// enum for q,r,s
18
// only support in C++/CLI
19
enum class hType {
20
q,
21
r,
22
s
23
};
24
25
// Binarize image
26
void binarize(Bitmap^ , Bitmap^);
27
// Downsampling image by factor
28
void downSampleing(Bitmap^ , Bitmap^, int, int);
29
// h func for Yokoi
30
hType h(Color, Color, Color, Color);
31
// h func for Yokoi
32
int f(hType, hType, hType, hType);
33
// Process Yokoi connectivity number
34
void yokoi(Bitmap^ , const char*);
35
36
int main() {
37
// Read lena.jpg
38
Bitmap^ oriImg = gcnew Bitmap("lena.jpg");
39
// Declare binary image for lena.jpg
40
Bitmap^ binImg = gcnew Bitmap(oriImg->Width, oriImg->Height);
41
// Binarize lena.jpg
42
binarize(oriImg, binImg);
43
44
// Declare down-sampling image for binarized image
45
Bitmap^ dsImg = gcnew Bitmap(64, 64);
46
// Downsampling image by factor 8*8
47
downSampleing(binImg, dsImg, 8, 8);
48
// Process Yokoi connectivity number
49
yokoi(dsImg, "YokoiMatrix.txt");
50
51
return 0;
52
}
53
54
// Binarize image
55
void binarize(Bitmap^ oriImg, Bitmap^ binImg) {
56
for (int y = 0; y != oriImg->Height; ++y) {
57
for (int x = 0; x != oriImg->Width; ++x) {
58
int gray = (oriImg->GetPixel(x, y).R +
59
oriImg->GetPixel(x, y).G +
60
oriImg->GetPixel(x, y).B) / 3;
61
62
// If intensity >= 128, set the pixel to black.
63
// If intensity < 128, set the pixel to white.
64
if (gray >= 128) {
65
binImg->SetPixel(x, y, Color::White);
66
}
67
else {
68
binImg->SetPixel(x, y, Color::Black);
69
}
70
}
71
}
72
}
73
74
// Downsampling image by factor
75
void downSampleing(Bitmap^ oriImg, Bitmap^ dsImg, int unitX, int unitY) {
76
for (int x = 0, i = 0; x != oriImg->Width; x += unitX, ++i) {
77
for (int y = 0, j = 0; y != oriImg->Height; y += unitY, ++j) {
78
dsImg->SetPixel(i, j,oriImg->GetPixel(x, y));
79
}
80
}
81
}
82
83
// h func for Yokoi
84
// Computer and Robot Vision P.274, Robert M. Haralick
85
hType h(Color b, Color c, Color d, Color e) {
86
if (b == c && (d != b || e != b)) {
87
//return q;
88
return hType::q;
89
}
90
else if (b == c && (d == b && e == b)) {
91
//return r;
92
return hType::r;
93
}
94
else {
95
//return s;
96
return hType::s;
97
}
98
}
99
100
// f func for Yokoi
101
// Computer and Robot Vision P.274, Robert M. Haralick
102
int f(hType a1, hType a2, hType a3, hType a4) {
103
if ((a1 == a2) && (a2 == a3) && (a3 == a4) && (a4 == hType::r)) {
104
return 5;
105
}
106
else {
107
// Count the number of q
108
int n = 0;
109
110
if (a1 == hType::q) ++n;
111
if (a2 == hType::q) ++n;
112
if (a3 == hType::q) ++n;
113
if (a4 == hType::q) ++n;
114
115
return n;
116
}
117
}
118
119
// Process Yokoi connectivity number
120
void yokoi(Bitmap^ oriImg, const char* fileName) {
121
std::ofstream output(fileName);
122
123
for (int y = 0; y != oriImg->Height; ++y) {
124
for (int x = 0; x != oriImg->Width; ++x) {
125
Color x0 = oriImg->GetPixel(x, y);
126
127
// Only process 1 in binary image (White)
128
if (x0 == Color::FromArgb(255,255,255)) {
129
Color x1 = Color::Black;
130
if (x+1 < oriImg->Width) { // Check for the boundary
131
x1 = oriImg->GetPixel(x+1, y);
132
}
133
134
Color x2 = Color::Black;
135
if (y-1 >= 0) {
136
x2 = oriImg->GetPixel(x, y-1);
137
}
138
139
Color x3 = Color::Black;
140
if (x-1 >= 0) {
141
x3 = oriImg->GetPixel(x-1, y);
142
}
143
144
Color x4 = Color::Black;
145
if (y+1 < oriImg->Height) {
146
x4 = oriImg->GetPixel(x, y+1);
147
}
148
149
Color x5 = Color::Black;
150
if (x+1 < oriImg->Width && y+1 < oriImg->Height) {
151
x5 = oriImg->GetPixel(x+1, y+1);
152
}
153
154
Color x6 = Color::Black;
155
if (x+1 < oriImg->Width && y-1 >= 0) {
156
x6 = oriImg->GetPixel(x+1, y-1);
157
}
158
159
Color x7 = Color::Black;
160
if (x-1 >= 0 && y-1 >= 0) {
161
x7 = oriImg->GetPixel(x-1, y-1);
162
}
163
164
Color x8 = Color::Black;
165
if (x-1 >= 0 && y+1 < oriImg->Height) {
166
x8 = oriImg->GetPixel(x-1, y+1);
167
}
168
169
// Computer and Robot Vision P.274, Robert M. Haralick
170
int n = f(h(x0, x1, x6, x2),
171
h(x0, x2, x7, x3),
172
h(x0, x3, x8, x4),
173
h(x0, x4, x5, x1));
174
175
// Write to file
176
output << n << " ";
177
178
}
179
else { // 0 in binary image (Black)
180
output << " " << " ";
181
}
182
}
183
// New line
184
output << std::endl;
185
}
186
}
/* 2
(C) OOMusou 2006 http://oomusou.cnblogs.com3

4
Filename : memset1.cpp5
Compiler : Visual C++ 8.06
Description : Demo how to produce Yokoi connectivity number7
Release : 12/06/20068
*/9

10
#include "stdafx.h"11
#include <fstream>12
#include <iostream>13

14
using namespace System::Drawing;15
using namespace System::Drawing::Imaging;16

17
// enum for q,r,s 18
// only support in C++/CLI19
enum class hType {20
q,21
r,22
s23
};24

25
// Binarize image26
void binarize(Bitmap^ , Bitmap^);27
// Downsampling image by factor28
void downSampleing(Bitmap^ , Bitmap^, int, int);29
// h func for Yokoi30
hType h(Color, Color, Color, Color);31
// h func for Yokoi32
int f(hType, hType, hType, hType);33
// Process Yokoi connectivity number34
void yokoi(Bitmap^ , const char*);35

36
int main() {37
// Read lena.jpg38
Bitmap^ oriImg = gcnew Bitmap("lena.jpg");39
// Declare binary image for lena.jpg40
Bitmap^ binImg = gcnew Bitmap(oriImg->Width, oriImg->Height);41
// Binarize lena.jpg42
binarize(oriImg, binImg);43

44
// Declare down-sampling image for binarized image45
Bitmap^ dsImg = gcnew Bitmap(64, 64);46
// Downsampling image by factor 8*847
downSampleing(binImg, dsImg, 8, 8);48
// Process Yokoi connectivity number49
yokoi(dsImg, "YokoiMatrix.txt");50

51
return 0;52
}53

54
// Binarize image55
void binarize(Bitmap^ oriImg, Bitmap^ binImg) {56
for (int y = 0; y != oriImg->Height; ++y) {57
for (int x = 0; x != oriImg->Width; ++x) {58
int gray = (oriImg->GetPixel(x, y).R +59
oriImg->GetPixel(x, y).G +60
oriImg->GetPixel(x, y).B) / 3;61

62
// If intensity >= 128, set the pixel to black.63
// If intensity < 128, set the pixel to white.64
if (gray >= 128) {65
binImg->SetPixel(x, y, Color::White);66
}67
else {68
binImg->SetPixel(x, y, Color::Black);69
}70
}71
}72
}73

74
// Downsampling image by factor75
void downSampleing(Bitmap^ oriImg, Bitmap^ dsImg, int unitX, int unitY) {76
for (int x = 0, i = 0; x != oriImg->Width; x += unitX, ++i) {77
for (int y = 0, j = 0; y != oriImg->Height; y += unitY, ++j) {78
dsImg->SetPixel(i, j,oriImg->GetPixel(x, y));79
}80
}81
}82

83
// h func for Yokoi84
// Computer and Robot Vision P.274, Robert M. Haralick85
hType h(Color b, Color c, Color d, Color e) {86
if (b == c && (d != b || e != b)) {87
//return q;88
return hType::q;89
}90
else if (b == c && (d == b && e == b)) {91
//return r;92
return hType::r;93
}94
else {95
//return s;96
return hType::s;97
}98
}99

100
// f func for Yokoi101
// Computer and Robot Vision P.274, Robert M. Haralick102
int f(hType a1, hType a2, hType a3, hType a4) {103
if ((a1 == a2) && (a2 == a3) && (a3 == a4) && (a4 == hType::r)) {104
return 5;105
}106
else {107
// Count the number of q108
int n = 0;109

110
if (a1 == hType::q) ++n;111
if (a2 == hType::q) ++n;112
if (a3 == hType::q) ++n;113
if (a4 == hType::q) ++n;114

115
return n;116
}117
}118

119
// Process Yokoi connectivity number120
void yokoi(Bitmap^ oriImg, const char* fileName) {121
std::ofstream output(fileName);122

123
for (int y = 0; y != oriImg->Height; ++y) {124
for (int x = 0; x != oriImg->Width; ++x) {125
Color x0 = oriImg->GetPixel(x, y);126

127
// Only process 1 in binary image (White)128
if (x0 == Color::FromArgb(255,255,255)) {129
Color x1 = Color::Black;130
if (x+1 < oriImg->Width) { // Check for the boundary131
x1 = oriImg->GetPixel(x+1, y);132
}133

134
Color x2 = Color::Black;135
if (y-1 >= 0) {136
x2 = oriImg->GetPixel(x, y-1);137
}138

139
Color x3 = Color::Black;140
if (x-1 >= 0) {141
x3 = oriImg->GetPixel(x-1, y);142
}143
144
Color x4 = Color::Black;145
if (y+1 < oriImg->Height) {146
x4 = oriImg->GetPixel(x, y+1);147
}148

149
Color x5 = Color::Black;150
if (x+1 < oriImg->Width && y+1 < oriImg->Height) {151
x5 = oriImg->GetPixel(x+1, y+1);152
}153

154
Color x6 = Color::Black;155
if (x+1 < oriImg->Width && y-1 >= 0) {156
x6 = oriImg->GetPixel(x+1, y-1);157
}158

159
Color x7 = Color::Black;160
if (x-1 >= 0 && y-1 >= 0) {161
x7 = oriImg->GetPixel(x-1, y-1);162
}163

164
Color x8 = Color::Black;165
if (x-1 >= 0 && y+1 < oriImg->Height) {166
x8 = oriImg->GetPixel(x-1, y+1);167
}168

169
// Computer and Robot Vision P.274, Robert M. Haralick170
int n = f(h(x0, x1, x6, x2),171
h(x0, x2, x7, x3),172
h(x0, x3, x8, x4),173
h(x0, x4, x5, x1));174

175
// Write to file176
output << n << " ";177

178
}179
else { // 0 in binary image (Black)180
output << " " << " ";181
}182
}183
// New line184
output << std::endl;185
}186
}
原图
Downsampling
Yokoi Connectivity Number
1
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
2
1 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1
3
1 5 5 5 5 5 5 1 1 3 1 1 2 1 1 5 5 1 1 1 3 2 2 1 1 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 1 2 1
4
1 5 5 5 5 5 5 1 2 2 1 1 1 1 2 1 1 0 2 1 1 5 5 5 5 5 5 5 5 5 5 1 1 1
5
1 5 5 5 5 5 5 1 1 3 1 3 1 1 1 1 1 2 1 2 2 1 5 5 5 5 5 5 5 5 5 5 5 1 0
6
1 5 5 5 5 5 5 1 1 1 1 2 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1 1
7
1 5 1 1 1 5 5 1 1 1 1 3 2 1 1 1 1 1 2 1 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1
8
1 5 1 1 5 5 1 1 1 1 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1
9
1 1 1 1 5 5 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1
10
1 1 1 5 5 1 0 1 2 5 1 1 1 5 5 5 5 5 1 1 1 1 5 5 1 1 1 5 5 5 5 5 5 1 1
11
2 1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 5 5 5 5 1 1
12
1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 5 5 5 1 1
13
1 5 5 1 0 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 5 5 1 1 1 2
14
1 5 5 1 1 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 1 1 1 1 1
15
1 5 5 1 1 2 2 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 1 1 1 1 1 5 1
16
1 5 5 1 2 1 2 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 2 2 1 5 1 1 1 1 1 1 1 1 5 5 1
17
1 5 5 1 2 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 1 1 5 5 5 1 1 5 5 5 1
18
1 5 5 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1 1 1 5 5 5 1 1 1 1 5 5 5 1
19
1 5 5 1 1 2 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 1
20
1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 1
21
1 5 5 1 1 1 1 2 2 1 5 1 1 1 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 1
22
1 5 5 1 1 5 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 1
23
1 5 5 1 1 5 5 1 0 1 2 2 1 2 2 1 5 5 5 5 5 5 5 1 1 1 0 1 1 5 5 5 5 5 5 1
24
1 5 5 1 1 1 5 1 0 0 2 2 0 1 1 1 1 5 5 5 5 5 1 1 2 0 1 5 5 5 5 5 5 5 1
25
1 5 5 1 1 5 1 0 1 2 1 1 5 5 5 5 1 1 1 2 1 2 1 1 5 5 5 5 5 5 5 1
26
1 5 5 1 1 2 2 1 0 0 1 5 5 5 5 5 1 1 1 1 1 2 5 5 5 5 5 5 5 1
27
1 5 5 1 2 0 1 1 5 5 5 5 5 1 1 2 1 1 5 5 5 5 5 5 5 1
28
1 5 5 1 2 0 0 1 1 5 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 5 5 1
29
1 5 5 1 0 2 1 1 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 1
30
1 5 5 1 1 0 1 1 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 1
31
1 5 5 1 1 1 5 5 1 1 1 1 5 5 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1
32
1 5 5 1 1 1 0 1 1 1 1 1 1 1 1 5 5 5 1 1 2 1 5 5 5 5 5 5 5 5 5 1
33
1 5 5 1 1 1 2 1 1 5 1 1 1 5 1 1 1 2 1 1 1 5 5 5 5 5 5 5 5 5 1
34
1 5 5 1 2 1 1 0 1 1 1 1 1 1 5 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1
35
1 5 5 1 1 1 1 1 1 1 2 1 1 1 5 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1
36
1 5 5 1 1 0 2 1 1 2 1 1 5 5 5 5 5 1 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1
37
1 5 5 1 2 1 1 3 2 1 5 5 5 5 5 5 5 5 5 5 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 1
38
1 5 5 1 1 1 1 5 5 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1
39
1 5 5 1 1 1 1 1 5 5 5 5 1 1 1 1 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1
40
1 5 5 1 1 1 1 5 5 5 5 1 1 5 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1
41
1 5 5 1 0 0 1 1 1 5 5 5 5 1 1 1 5 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1
42
1 5 5 1 1 1 5 5 5 5 5 1 1 1 5 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1
43
1 5 5 1 1 1 0 1 2 5 5 5 5 5 5 1 1 2 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1
44
1 5 5 1 2 2 1 1 5 1 1 1 1 1 5 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1
45
1 5 5 1 0 1 2 1 1 1 1 5 2 1 1 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 1
46
1 5 5 1 0 0 0 1 1 1 1 1 5 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1
47
1 5 5 1 0 1 1 1 1 1 5 1 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1
48
1 5 5 1 0 1 1 5 5 5 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 1 1
49
1 5 5 1 1 1 1 5 5 5 1 2 1 1 1 1 1 1 1 1 1 5 5 5 1 1
50
1 1 5 2 1 0 1 0 1 1 5 5 5 1 1 1 2 1 1 1 1 5 5 1 1
51
0 1 5 1 0 2 1 5 5 5 5 5 5 1 1 1 2 1 1 1 1 5 5 1 1
52
1 1 5 1 1 2 3 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 1 5 1 1
53
2 2 1 5 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 1 1 1 1 5 1
54
2 1 5 1 0 1 1 1 1 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 1 1 2 1 5 1 1
55
2 1 5 2 1 0 0 1 3 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 1 2 2 1 5 1
56
2 1 5 1 1 1 1 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 2 1 1 5 1 1
57
2 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 1 1 5 1
58
2 1 1 5 1 1 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 2 1 1 5 1
59
1 1 1 5 1 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1 1
60
1 1 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1
61
1 1 1 5 1 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 1 1
62
1 1 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1
63
1 1 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1
64
1 1 1 1 1 0 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2
1 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1 3
1 5 5 5 5 5 5 1 1 3 1 1 2 1 1 5 5 1 1 1 3 2 2 1 1 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 1 2 1 4
1 5 5 5 5 5 5 1 2 2 1 1 1 1 2 1 1 0 2 1 1 5 5 5 5 5 5 5 5 5 5 1 1 1 5
1 5 5 5 5 5 5 1 1 3 1 3 1 1 1 1 1 2 1 2 2 1 5 5 5 5 5 5 5 5 5 5 5 1 0 6
1 5 5 5 5 5 5 1 1 1 1 2 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1 1 7
1 5 1 1 1 5 5 1 1 1 1 3 2 1 1 1 1 1 2 1 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 8
1 5 1 1 5 5 1 1 1 1 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 9
1 1 1 1 5 5 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 10
1 1 1 5 5 1 0 1 2 5 1 1 1 5 5 5 5 5 1 1 1 1 5 5 1 1 1 5 5 5 5 5 5 1 1 11
2 1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 5 5 5 5 1 1 12
1 1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 5 5 5 1 1 13
1 5 5 1 0 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 5 5 1 1 1 2 14
1 5 5 1 1 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 1 1 1 1 1 15
1 5 5 1 1 2 2 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 1 1 1 1 1 5 1 16
1 5 5 1 2 1 2 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 2 2 1 5 1 1 1 1 1 1 1 1 5 5 1 17
1 5 5 1 2 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 1 1 5 5 5 1 1 5 5 5 1 18
1 5 5 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1 1 1 5 5 5 1 1 1 1 5 5 5 1 19
1 5 5 1 1 2 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 1 20
1 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 1 21
1 5 5 1 1 1 1 2 2 1 5 1 1 1 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 1 22
1 5 5 1 1 5 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 1 23
1 5 5 1 1 5 5 1 0 1 2 2 1 2 2 1 5 5 5 5 5 5 5 1 1 1 0 1 1 5 5 5 5 5 5 1 24
1 5 5 1 1 1 5 1 0 0 2 2 0 1 1 1 1 5 5 5 5 5 1 1 2 0 1 5 5 5 5 5 5 5 1 25
1 5 5 1 1 5 1 0 1 2 1 1 5 5 5 5 1 1 1 2 1 2 1 1 5 5 5 5 5 5 5 1 26
1 5 5 1 1 2 2 1 0 0 1 5 5 5 5 5 1 1 1 1 1 2 5 5 5 5 5 5 5 1 27
1 5 5 1 2 0 1 1 5 5 5 5 5 1 1 2 1 1 5 5 5 5 5 5 5 1 28
1 5 5 1 2 0 0 1 1 5 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 5 5 1 29
1 5 5 1 0 2 1 1 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 1 30
1 5 5 1 1 0 1 1 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 1 31
1 5 5 1 1 1 5 5 1 1 1 1 5 5 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 1 32
1 5 5 1 1 1 0 1 1 1 1 1 1 1 1 5 5 5 1 1 2 1 5 5 5 5 5 5 5 5 5 1 33
1 5 5 1 1 1 2 1 1 5 1 1 1 5 1 1 1 2 1 1 1 5 5 5 5 5 5 5 5 5 1 34
1 5 5 1 2 1 1 0 1 1 1 1 1 1 5 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1 35
1 5 5 1 1 1 1 1 1 1 2 1 1 1 5 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1 36
1 5 5 1 1 0 2 1 1 2 1 1 5 5 5 5 5 1 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 1 37
1 5 5 1 2 1 1 3 2 1 5 5 5 5 5 5 5 5 5 5 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 1 38
1 5 5 1 1 1 1 5 5 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 39
1 5 5 1 1 1 1 1 5 5 5 5 1 1 1 1 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 40
1 5 5 1 1 1 1 5 5 5 5 1 1 5 1 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 41
1 5 5 1 0 0 1 1 1 5 5 5 5 1 1 1 5 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 42
1 5 5 1 1 1 5 5 5 5 5 1 1 1 5 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 43
1 5 5 1 1 1 0 1 2 5 5 5 5 5 5 1 1 2 1 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 44
1 5 5 1 2 2 1 1 5 1 1 1 1 1 5 1 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 45
1 5 5 1 0 1 2 1 1 1 1 5 2 1 1 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 1 46
1 5 5 1 0 0 0 1 1 1 1 1 5 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1 47
1 5 5 1 0 1 1 1 1 1 5 1 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1 48
1 5 5 1 0 1 1 5 5 5 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 1 1 49
1 5 5 1 1 1 1 5 5 5 1 2 1 1 1 1 1 1 1 1 1 5 5 5 1 1 50
1 1 5 2 1 0 1 0 1 1 5 5 5 1 1 1 2 1 1 1 1 5 5 1 1 51
0 1 5 1 0 2 1 5 5 5 5 5 5 1 1 1 2 1 1 1 1 5 5 1 1 52
1 1 5 1 1 2 3 1 1 5 5 5 5 5 5 5 5 1 1 1 5 5 1 1 1 1 5 1 1 53
2 2 1 5 1 1 1 1 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 1 1 1 1 5 1 54
2 1 5 1 0 1 1 1 1 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 1 1 2 1 5 1 1 55
2 1 5 2 1 0 0 1 3 1 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 1 2 2 1 5 1 56
2 1 5 1 1 1 1 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 2 1 1 5 1 1 57
2 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 1 1 5 1 58
2 1 1 5 1 1 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 2 1 1 5 1 59
1 1 1 5 1 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1 1 60
1 1 1 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 61
1 1 1 5 1 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 1 1 62
1 1 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 63
1 1 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 64
1 1 1 1 1 0 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reference


浙公网安备 33010602011771号