jvm的线程创建的两种方式
在JVM规范里是没有规定线程要以哪种形式创建——具体实现用1:1(内核线程)、N:1(用户态线程)、M:N(混合)模型的任何一种都完全OK。Java并不暴露出不同线程模型的区别,上层应用是感知不到差异的(只是性能特性会不太一样…)。
内核线程由操作系统直接支持。由操作系统内核创建、调度和管理。内核维护进程及线程的上下文信息以及线程切换。一个内核线程由于I/O操作而阻塞,不会影响其它线程的运行。
Java线程的实现是怎样的呢?我们通过SUN Java 6的源码了解其在Windows和Linux下的实现。
<!--<br><br>Code highlighting produced by Actipro CodeHighlighter (freeware)<br>http://www.CodeHighlighter.com/<br><br>-->// Allocate and initialize a new OSThread bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) { unsigned thread_id; // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) { return false; } // Initial state is ALLOCATED but not INITIALIZED { MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag); osthread->set_state(ALLOCATED); } // Initialize support for Java interrupts HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL); if (interrupt_event == NULL) { delete osthread; return NULL; } osthread->set_interrupt_event(interrupt_event); osthread->set_interrupted(false); thread->set_osthread(osthread); if (stack_size == 0) { switch (thr_type) { case os::java_thread: // Java threads use ThreadStackSize which default value can be changed with the flag -Xss if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create(); break; case os::compiler_thread: if (CompilerThreadStackSize > 0) { stack_size = (size_t)(CompilerThreadStackSize * K); break; } // else fall through: // use VMThreadStackSize if CompilerThreadStackSize is not defined case os::vm_thread: case os::pgc_thread: case os::cgc_thread: case os::watcher_thread: if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K); break; } } // Create the Win32 thread // // Contrary to what MSDN document says, "stack_size" in _beginthreadex() // does not specify stack size. Instead, it specifies the size of // initially committed space. The stack size is determined by // PE header in the executable. If the committed "stack_size" is larger // than default value in the PE header, the stack is rounded up to the // nearest multiple of 1MB. For example if the launcher has default // stack size of 320k, specifying any size less than 320k does not // affect the actual stack size at all, it only affects the initial // commitment. On the other hand, specifying 'stack_size' larger than // default value may cause significant increase in memory usage, because // not only the stack space will be rounded up to MB, but also the // entire space is committed upfront. // // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION' // for CreateThread() that can treat 'stack_size' as stack size. However we // are not supposed to call CreateThread() directly according to MSDN // document because JVM uses C runtime library. The good news is that the // flag appears to work with _beginthredex() as well. #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000) #endif HANDLE thread_handle = (HANDLE)_beginthreadex(NULL, (unsigned)stack_size, (unsigned (__stdcall *)(void*)) java_start, thread, CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, &thread_id); if (thread_handle == NULL) { // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again // without the flag. thread_handle = (HANDLE)_beginthreadex(NULL, (unsigned)stack_size, (unsigned (__stdcall *)(void*)) java_start, thread, CREATE_SUSPENDED, &thread_id); } if (thread_handle == NULL) { // Need to clean up stuff we've allocated so far CloseHandle(osthread->interrupt_event()); thread->set_osthread(NULL); delete osthread; return NULL; } Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count); // Store info on the Win32 thread into the OSThread osthread->set_thread_handle(thread_handle); osthread->set_thread_id(thread_id); // Initial thread state is INITIALIZED, not SUSPENDED { MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag); osthread->set_state(INITIALIZED); } // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain return true; }
可以看出,SUN JVM在Windows下的实现,使用_beginthreadex来创建线程,注释中也说明了为什么不用“Window编程书籍推荐使用”的CreateThread函数。由此看出,Java线程在Window下的实现是使用内核线程。
摘自<<windows操作系统原理>>
内核线程:由操作系统内核创建和撤销,内核维护进程及线程的上下文信息以及线程的切换,一个内核线程由于I/O操作而阻塞,
不会影响其他线程的运行,windows NT和2000 支持内核线程。
用户线程:由应用进程利用线程库创建和管理,不依赖操作系统的核心,不需要用户态/内核态的切换,速度快,操作系统内核不知道
多线程的存在,因此一个线程阻塞将使得整个进程(包括它的所有的线程)阻塞,由于这里的处理器时间片分配是以进程为基本单位的。所以每个线程执行的时间相对减少。
而在Linux下又是怎样的呢?
在os_linux.cpp文件中的代码摘录如下:
<!--<br><br>Code highlighting produced by Actipro CodeHighlighter (freeware)<br>http://www.CodeHighlighter.com/<br><br>--># include <pthread.h> bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) { assert(thread->osthread() == NULL, "caller responsible"); // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) { return false; } // set the correct thread state osthread->set_thread_type(thr_type); // Initial state is ALLOCATED but not INITIALIZED osthread->set_state(ALLOCATED); thread->set_osthread(osthread); // init thread attributes pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // stack size if (os::Linux::supports_variable_stack_size()) { // calculate stack size if it's not specified by caller if (stack_size == 0) { stack_size = os::Linux::default_stack_size(thr_type); switch (thr_type) { case os::java_thread: // Java threads use ThreadStackSize which default value can be changed with the flag -Xss if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create(); break; case os::compiler_thread: if (CompilerThreadStackSize > 0) { stack_size = (size_t)(CompilerThreadStackSize * K); break; } // else fall through: // use VMThreadStackSize if CompilerThreadStackSize is not defined case os::vm_thread: case os::pgc_thread: case os::cgc_thread: case os::watcher_thread: if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K); break; } } stack_size = MAX2(stack_size, os::Linux::min_stack_allowed); pthread_attr_setstacksize(&attr, stack_size); } else { // let pthread_create() pick the default value. } // glibc guard page pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type)); ThreadState state; { // Serialize thread creation if we are running with fixed stack LinuxThreads bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack(); if (lock) { os::Linux::createThread_lock()->lock_without_safepoint_check(); } pthread_t tid; int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread); pthread_attr_destroy(&attr); if (ret != 0) { if (PrintMiscellaneous && (Verbose || WizardMode)) { perror("pthread_create()"); } // Need to clean up stuff we've allocated so far thread->set_osthread(NULL); delete osthread; if (lock) os::Linux::createThread_lock()->unlock(); return false; } // Store pthread info into the OSThread osthread->set_pthread_id(tid); // Wait until child thread is either initialized or aborted { Monitor* sync_with_child = osthread->startThread_lock(); MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag); while ((state = osthread->get_state()) == ALLOCATED) { sync_with_child->wait(Mutex::_no_safepoint_check_flag); } } if (lock) { os::Linux::createThread_lock()->unlock(); } } // Aborted due to thread limit being reached if (state == ZOMBIE) { thread->set_osthread(NULL); delete osthread; return false; } // The thread is returned suspended (in state INITIALIZED), // and is started higher up in the call chain assert(state == INITIALIZED, "race condition"); return true; }
Java在Linux下的线程的创建,使用了pthread线程库,而pthread就是一个用户线程库,因此结论是,Java在Linux下是使用用户线程实现的。Linux 2.6内核的pthread实现为NPTL,和内核线程的映射是一对一。之前的Linux threads也是。
对于NPTL的一些介绍:
POSIX Thread Library (NPTL)使Linux内核可以非常有效的运行使用POSIX线程标准写的程序。这里有一个测试数据,在32位机下,NPTL成功启动100000个线程只用了2秒,而不使用NPTL将需要大约15分钟左右的时间。
历史
在内核2.6以前的调度实体都是进程,内核并没有真正支持线程。它是能过一个系统调用clone()来实现的,这个调用创建了一份调用进程的拷贝,跟fork()不同的是,这份进程拷贝完全共享了调用进程的地址空间。LinuxThread就是通过这个系统调用来提供线程在内核级的支持的(许多以前的线程实现都完全是在用户态,内核根本不知道线程的存在)。非常不幸的是,这种方法有相当多的地方没有遵循POSIX标准,特别是在信号处理,调度,进程间通信原语等方面。
很显然,为了改进LinuxThread必须得到内核的支持,并且需要重写线程库。为了实现这个需求,开始有两个相互竞争的项目:IBM启动的NGTP(Next Generation POSIX Threads)项目,以及Redhat公司的NPTL。在2003年的年中,IBM放弃了NGTP,也就是大约那时,Redhat发布了最初的NPTL。
NPTL最开始在redhat linux 9里发布,现在从RHEL3起内核2.6起都支持NPTL,并且完全成了GNU C库的一部分。
设计
NPTL使用了跟LinuxThread相同的办法,在内核里面线程仍然被当作是一个进程,并且仍然使用了clone()系统调用(在NPTL库里调用)。但是,NPTL需要内核级的特殊支持来实现,比如需要挂起然后再唤醒线程的线程同步原语futex.
NPTL也是一个1*1的线程库,就是说,当你使用pthread_create()调用创建一个线程后,在内核里就相应创建了一个调度实体,在linux里就是一个新进程,这个方法最大可能的简化了线程的实现。
除NPTL的1*1模型外还有一个m*n模型,通常这种模型的用户线程数会比内核的调度实体多。在这种实现里,线程库本身必须去处理可能存在的调度,这样在线程库内部的上下文切换通常都会相当的快,因为它避免了系统调用转到内核态。然而这种模型增加了线程实现的复杂性,并可能出现诸如优先级反转的问题,此外,用户态的调度如何跟内核态的调度进行协调也是很难让人满意。
                    
                
                
            
        
浙公网安备 33010602011771号