【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

【题目】H. Ember and Storm's Tree Game

【题意】Zsnuoの博客

【算法】动态规划+排列组合

【题解】题目本身其实并不难,但是大量干扰因素让题目显得很神秘。

参考:Zsnuoの博客

 

一、首先Ember必胜(考虑n个点连成一条链),故合法的树一定满足先手必胜。当Storm选择的链满足单调或单峰时,每一条链对答案贡献两对(i,op)

解释:单调时,考虑翻转最后一个数和从第二个数开始取负两种操作。单峰时,上凸考虑翻转顶峰和顶峰右侧的数,下凸考虑取负顶峰和顶峰右侧的数。

这样之后,我们就完全排除了博弈的因素(胜负和操作选择)。

 

二、问题转化为:令S表示满足 [ 包含n个点 ] 且 [ 每个点出度<=d ] 且 [ 所有树链编号单调或单峰 ] 的树,由(一)得最终答案ANS=2*n*(n-1)*|S|,即求|S|

其中单峰的路径比较容易考虑,S一定存在一个形态,满足所有单峰路径(u,v)的峰都是lca(u,v)。

证明:如果有一条路径峰不在LCA,那么lca(u,v)向上延伸一定是单调的,那选该峰作为根即可。

接下来考虑单调的路径(u,v)(u,v互不为祖先),易得如果lca(u,v)≠root就无法满足条件,所以不同单调性的指向根的链只能在根相遇。

也就是,每棵树都存在至少一个根root,满足所有以root为端点的路径都是单调的。接下来我们只须统计同一单调性的树的个数,在根处拼起来即可。

 

三、设f[i][j]表示包含i个点,根节点出度为j且满足 [ 所有节点编号均大于其父亲节点编号 ] 的树的个数。

同排列DP一样,我们关心的只有子树节点编号的大小关系,和具体是什么无关。所以我们每次都视为编号为1~i的节点来统计即可。

规定父亲节点编号为1,为了不重复统计,每次枚举根节点编号为2的子树大小k来转移,即:

$$f(i,j)=\sum _{k=1}^{i-1}f(i-k,j-1)*\binom{i-2}{k-1}*\sum _{l=0}^{d-1}f(k,l)$$

从未确定的i-2个点中选择一些来构成子树中的k-1个点,即C(i-2,k-1),然后再按大小关系当成2~k排列。

令$sum(i)=\sum _{j=0}^{d-1}f(i,j)$,就可以前缀和优化:

$$f(i,j)=\sum _{k=1}^{i-1}f(i-k,j-1)*\binom{i-2}{k-1}*sum(k)$$

预处理组合数,初始化f(1,0)=1。(这样就不用理会非素数模数了,不然又得搞CRT那套,太麻烦了……)

 

四、在根节点处拼接。

假设两个根节点都为root的不同单调性的树拼接(根节点重合),枚举第一单调性的点数i,第一单调性所占度数j,第二单调性所占度数k,即:

$$|S|=\sum _{i=1}^{n}\sum _{j+k\leq d}f(i,j)*f(n-i+1,k)$$

最后一个问题,如果一棵树S存在多个root(例如n=2),那么这多个root一定构成一条单调链,其中一端是j=1且k≠1,另一端是j≠1且k=1,中间是j=1且k=1,我们只在第一种情况统计这棵树。

那么,最终:

$$|S|=\sum _{i=1}^{n}\sum _{j+k\leq d,k\neq 1}f(i,j)*f(n-i+1,k)$$

复杂度O(n^3)。

#include<cstdio>
const int maxn=210;

long long n,d,MOD,c[maxn][maxn],sum[maxn],ans,f[maxn][maxn];
int main(){
    scanf("%lld%lld%lld",&n,&d,&MOD);
    for(int i=0;i<=n;i++){
        c[i][0]=1;
        for(int j=1;j<=i;j++)c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
    }
    f[1][0]=sum[1]=1;
    for(int i=2;i<=n;i++){
        for(int j=1;j<=d;j++){
            for(int k=1;k<i;k++){
                f[i][j]=(f[i][j]+f[i-k][j-1]*c[i-2][k-1]%MOD*sum[k])%MOD;
            }
            if(j!=d)sum[i]=(sum[i]+f[i][j])%MOD;
        }
    }
    for(int i=1;i<=n;i++)
        for(int j=0;j<=d;j++)
            for(int k=0;j+k<=d;k++)if(k!=1)
                ans=(ans+f[i][j]*f[n-i+1][k])%MOD;
    printf("%lld",2*n*(n-1)*ans%MOD);
    return 0;
}
View Code

 

posted @ 2018-03-28 22:38  ONION_CYC  阅读(...)  评论(...编辑  收藏