摘要:         本文深入介绍了 Transformers 框架中的 question-answering 任务,涵盖任务简介、应用场景如智能助手和客户服务、任务配置与模型选择、实战代码示例,以及如何利用 Gradio 创建 WebUI 界面,使用户能通过浏览器实时获取问答结果。文章旨在帮助读者快速掌握使用 Transformers 构建高效问答系统的方法……    阅读全文
本文深入介绍了 Transformers 框架中的 question-answering 任务,涵盖任务简介、应用场景如智能助手和客户服务、任务配置与模型选择、实战代码示例,以及如何利用 Gradio 创建 WebUI 界面,使用户能通过浏览器实时获取问答结果。文章旨在帮助读者快速掌握使用 Transformers 构建高效问答系统的方法……    阅读全文
 本文深入介绍了 Transformers 框架中的 question-answering 任务,涵盖任务简介、应用场景如智能助手和客户服务、任务配置与模型选择、实战代码示例,以及如何利用 Gradio 创建 WebUI 界面,使用户能通过浏览器实时获取问答结果。文章旨在帮助读者快速掌握使用 Transformers 构建高效问答系统的方法……    阅读全文
本文深入介绍了 Transformers 框架中的 question-answering 任务,涵盖任务简介、应用场景如智能助手和客户服务、任务配置与模型选择、实战代码示例,以及如何利用 Gradio 创建 WebUI 界面,使用户能通过浏览器实时获取问答结果。文章旨在帮助读者快速掌握使用 Transformers 构建高效问答系统的方法……    阅读全文
posted @ 2024-12-18 20:51
老牛啊
阅读(584)
评论(0)
推荐(0)
        
 
                     
                    
                 
                    
                
 本文深入探讨了 Transformers 框架中词嵌入(Token Embeddings)的关键作用和实现细节,展示了将离散符号映射至连续向量空间的过程。通过具体代码示例,我们揭示了 Qwen2.5-1.5B 大模型中嵌入矩阵的工作原理,并演示了如何将文本序列转换为嵌入向量。此外,文章还介绍了经典的 Word2Vec 技术,使用 gensim 库训练模型并进行词汇相似性分析,以便更好地理解和应用自然语言处理中的嵌入技术……
本文深入探讨了 Transformers 框架中词嵌入(Token Embeddings)的关键作用和实现细节,展示了将离散符号映射至连续向量空间的过程。通过具体代码示例,我们揭示了 Qwen2.5-1.5B 大模型中嵌入矩阵的工作原理,并演示了如何将文本序列转换为嵌入向量。此外,文章还介绍了经典的 Word2Vec 技术,使用 gensim 库训练模型并进行词汇相似性分析,以便更好地理解和应用自然语言处理中的嵌入技术……     本文深入简出介绍了 Transformers 框架中的 token-classification 任务,从基础概念到实际应用,包括命名实体识别、分词和词性标注,最后还会提供详细的代码示例和 WebUI 界面操作,帮助你快速上手词元分类和命名实体识别……
本文深入简出介绍了 Transformers 框架中的 token-classification 任务,从基础概念到实际应用,包括命名实体识别、分词和词性标注,最后还会提供详细的代码示例和 WebUI 界面操作,帮助你快速上手词元分类和命名实体识别……     Bolt.new 用一句话快速构建全栈应用:本地部署与应用实战(Ollama/Qwen2.5 等)"
description = "本文详细介绍如何本地 Ollama 和国内大模型资源,在本地环境中快速部署和使用 Bolt.new,结合 Ollama 和 Qwen2.5-Coder,轻松实现从代码编写到自动部署的全流程。适合所有希望提升开发效率的开发者……
Bolt.new 用一句话快速构建全栈应用:本地部署与应用实战(Ollama/Qwen2.5 等)"
description = "本文详细介绍如何本地 Ollama 和国内大模型资源,在本地环境中快速部署和使用 Bolt.new,结合 Ollama 和 Qwen2.5-Coder,轻松实现从代码编写到自动部署的全流程。适合所有希望提升开发效率的开发者……     本文深入浅出地介绍了Transformers框架中的text-classification任务,并结合Gradio库搭建一个可视化的Web界面,帮助您快速掌握文本分类的最佳实践。通过Pipeline API,您可以轻松使用预训练模型进行情感分析、垃圾邮件检测等任务……
本文深入浅出地介绍了Transformers框架中的text-classification任务,并结合Gradio库搭建一个可视化的Web界面,帮助您快速掌握文本分类的最佳实践。通过Pipeline API,您可以轻松使用预训练模型进行情感分析、垃圾邮件检测等任务……     本文详细介绍了Transformers框架中的text-to-audio任务,展示了如何使用Bark和ChatTTS模型将文本转化为自然流畅的语音。通过实际案例,探讨了该技术在有声读物、在线教育、虚拟助手等领域的应用,帮助开发者提升产品的用户体验,创造更多可能性……
本文详细介绍了Transformers框架中的text-to-audio任务,展示了如何使用Bark和ChatTTS模型将文本转化为自然流畅的语音。通过实际案例,探讨了该技术在有声读物、在线教育、虚拟助手等领域的应用,帮助开发者提升产品的用户体验,创造更多可能性……     Transformers 框架支持多种 NLP 任务,如何高效使用 Pipeline?本文从零开始,逐步介绍 Transformers 框架中的 Pipeline 和任务配置。通过实际案例和源代码分析,帮助你快速掌握 Transformers 框架的核心功能……
Transformers 框架支持多种 NLP 任务,如何高效使用 Pipeline?本文从零开始,逐步介绍 Transformers 框架中的 Pipeline 和任务配置。通过实际案例和源代码分析,帮助你快速掌握 Transformers 框架的核心功能……     阿里巴巴等联合推出的 Meissonic 文生图模型,仅 1B 参数,能在普通电脑及未来无线端运行推理。本文将详细展示其在笔记本上的本地部署教程,带你领略 Meissonic 的独特魅力与强大功能……
阿里巴巴等联合推出的 Meissonic 文生图模型,仅 1B 参数,能在普通电脑及未来无线端运行推理。本文将详细展示其在笔记本上的本地部署教程,带你领略 Meissonic 的独特魅力与强大功能……     本文深入解析 Qwen2.5 大语言模型的分词流程和 BPE 分词算法。通过中英文混合文本示例,详细介绍了从文本规范化、初步分词、字节编码与映射到 BPE 分词的每一步骤。结合代码实现,揭示了 Qwen2.5 如何高效处理多语言文本,帮助读者全面理解 BPE 分词算法的原理和应用……
本文深入解析 Qwen2.5 大语言模型的分词流程和 BPE 分词算法。通过中英文混合文本示例,详细介绍了从文本规范化、初步分词、字节编码与映射到 BPE 分词的每一步骤。结合代码实现,揭示了 Qwen2.5 如何高效处理多语言文本,帮助读者全面理解 BPE 分词算法的原理和应用……     还在为 PPT 配图发愁?Napkin.ai 来救场!它是强大的文本自动配图工具,能自动摘要文本、生成并自定义配图,下载方式多样。文中详细介绍其使用方法,包括注册、创建 Napkin、选择和设置配图等。此外,还有免费送书活动,关注、留言点赞就有机会获得《OpenAI API 接口应用实战》。快来参与……
还在为 PPT 配图发愁?Napkin.ai 来救场!它是强大的文本自动配图工具,能自动摘要文本、生成并自定义配图,下载方式多样。文中详细介绍其使用方法,包括注册、创建 Napkin、选择和设置配图等。此外,还有免费送书活动,关注、留言点赞就有机会获得《OpenAI API 接口应用实战》。快来参与……     本文是 Transformers 推理大语言模型技术细节的第 3 篇,基于 Qwen2.5 大模型,通过源代码走读,详细介绍了 AutoTokenizer 的分词器初始化、存储流程和技术细节。文章涵盖分词器的配置解析、字节对编码(BPE)分词算法,以及分词、编码、解码和添加 Token 等常用操作……
本文是 Transformers 推理大语言模型技术细节的第 3 篇,基于 Qwen2.5 大模型,通过源代码走读,详细介绍了 AutoTokenizer 的分词器初始化、存储流程和技术细节。文章涵盖分词器的配置解析、字节对编码(BPE)分词算法,以及分词、编码、解码和添加 Token 等常用操作……     本文紧接前篇文章,详细讲解 transformers 初始化和加载大语言模型过程,包括 AutoConfig/Qwen2Config/AutoModelForCausalLM/Qwen2ForCausalLM/Qwen2PreTrainedModel 和 PreTrainedModel 等核心类详解……
本文紧接前篇文章,详细讲解 transformers 初始化和加载大语言模型过程,包括 AutoConfig/Qwen2Config/AutoModelForCausalLM/Qwen2ForCausalLM/Qwen2PreTrainedModel 和 PreTrainedModel 等核心类详解……     本文详细讲解 transformers 推理大语言模型的初始化过程,包括 Python 包搜索、LazyModule 延迟模块、模块搜索和 Python 包 API 设计美学……
本文详细讲解 transformers 推理大语言模型的初始化过程,包括 Python 包搜索、LazyModule 延迟模块、模块搜索和 Python 包 API 设计美学……     本文主要介绍 Qwen2.5-Math 特点和能力,并在本地进行部署和数学推理,最后验证小学和初中的奥数题目,Qwen2.5-Math 不仅解题步骤清晰明了,正确率也达到惊人的 100%……
本文主要介绍 Qwen2.5-Math 特点和能力,并在本地进行部署和数学推理,最后验证小学和初中的奥数题目,Qwen2.5-Math 不仅解题步骤清晰明了,正确率也达到惊人的 100%……     Qwen2.5 开源的系列模型中,Qwen2.5-Coder 模型的推理能力技压群雄,本文集合 CrewAI 框架,让多智能体自己编写符合我们需求的程序……
Qwen2.5 开源的系列模型中,Qwen2.5-Coder 模型的推理能力技压群雄,本文集合 CrewAI 框架,让多智能体自己编写符合我们需求的程序……     
         浙公网安备 33010602011771号
浙公网安备 33010602011771号