221. Maximal Square

原题链接

221. Maximal Square

题目描述

在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:
输入:matrix = [["0"]]
输出:0

题目分析

可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。
如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。

那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:

如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;

如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。
具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
dp(i,j)=min(dp(i−1,j), dp(i−1,j−1), dp(i,j−1)) + 1

如果读者对这个状态转移方程感到不解,可以参考 1277. 统计全为 1 的正方形子矩阵的官方题解,其中给出了详细的证明。

此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。

代码

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dp(m, vector<int>(n, 0));

        int maxSide = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(matrix[i][j] == '1'){
                    if(i == 0 || j == 0){
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1;
                    }

                    maxSide = max(maxSide, dp[i][j]);
                }
            }
        }

        return maxSide*maxSide;
    }
};
posted @ 2021-07-17 12:52  nullxjx  阅读(35)  评论(0编辑  收藏  举报