第一换元积分
第一换元积分(凑积分)
\[设f(\mu)具有原函数F(\mu),\mu=\varphi(x)可导,则有换元公式\\
\begin{align}
\int f[\varphi(x)]\varphi'(x)dx&=\int f[\varphi(x)]d\varphi(x)=^{u=\varphi(x)}\int f)(\mu)d\mu\\
&=F(\mu)+C=F[\varphi(x)]+C
\end{align}
\]
常见的凑微分的形式
\[\begin{align}
&\int f(ax^n+b)x^{n-1}=\frac1{na}\int f(ax^n+b)(a\neq0,n\neq0)\\
&\int f(\sin x)\cos x dx=\int f(\sin x)d(\sin x)\\
&\int f(\cos x)\sin xdx=-\int f(\cos x)d(\cos x)\\
&\int f(\ln x)\frac{dx}x=\int f(\ln x)d(\ln x)\\
&\int f(\sqrt x)\frac{dx}{\sqrt x}=2\int f(\sqrt x)d(\sqrt x)\\
&\int f(\frac1x)\frac{dx}{x^2}=-\int f(\frac1x)d(\frac1x)\\
&\int f(\arctan x)\frac{dx}{1+x^2}=\int f(\arctan x)d(\arctan x)\\
&\int f(\arcsin x)\frac{dx}{\sqrt{1+x^2}}=\int f(\arcsin x)d\arcsin x
\end{align}
\]
\[【例】求\int 2\cos 2xdx\\
\begin{align}
=&\int f(\cos 2x)d2x\\
=&\sin x+C
\end{align}
\]
\[【例】求\int \frac1{a^2+x^2}dx(a\neq0)\\
\begin{align}&=\int \frac1{a^2(1+\frac {x^2}{a^2})}dx\\
&=\frac1a\int \frac1{1+(\frac x{a})^2}d\frac xa\\
&=\frac1a\arctan \frac xa+C
\end{align}
\]
\[【例】\int \frac{\sin x \cos x}{1+\sin^4x}dx\\
\begin{align}
&=\int \frac{\sin x}{1+\sin ^4x}d\sin x\\
&=\frac12\int\frac1{1+(\sin^2)^2}d\sin ^2x\\
&=\frac12\arctan (\sin ^2x)+C
\end{align}
\]
\[【例】求\int \sin^3xdx\\
=\int \sin^2\cdot \sin xdx\\
=\int(1-\cos^2x)\cdot \sin xdx\\
=\int (1-\cos^2x)d(-\cos x)\\
=\frac{\cos ^3x}3-\cos x+C
\]
\[【例】求\int \tan xdx\\
=\int \frac{\sin x}{\cos x}dx=-\int \frac1{\cos x}d(\cos x)\\
=-\ln|\cos x|+C
\]
\[【例】求\int \cos ^2xdx\\
=\int \frac{1+\cos 2x}{2}dx\\
=\frac12\int 1dx+\frac14\int \cos 2x d2x\\
=\frac 12x + \frac14\sin 2x+C
\]
\[【例】求\int \sec ^6xdx\\
=\int \sec^4\cdot \sec^2dx\\
=\int (1+\tan^2)^2.\sec^2dx\\
=\int (1+\tan^2)^2d\tan x\\
=C+\tan x+\frac{2\tan^3 x}3+\frac{\tan^5x}5
\]
\[【例】求\int \csc xdx\\
=\int \frac1{\sin x}dx=\int \frac1{\sin \frac x2\cos \frac x2}d\frac x2\\
=\int \frac1{\tan \frac x 2\cdot \cos^2 \frac x2}d\frac x2=\int \frac1{\tan \frac x2}\cdot\sec ^2\frac x2dx\\
=\int \frac1{\tan \frac x2}d\tan \frac x2\\
=\ln|\tan \frac x2|+C\\
\tan \frac x2=\frac{\sin \frac x2}{\cos \frac x2}=\frac {2\sin \frac x2\cdot \sin \frac x2}{2\sin \frac x2\cdot \cos \frac x2}\\
=\frac{2\sin ^2\frac x2}{\sin x}=\frac{1-\cos x}{\sin x}=\csc x- \cot x
\]
\[\ln|\tan \frac x2|+C=\ln|\csc x -\cot x|+C
\]
\[【例】求\int \sec xdx\\
=\int \frac 1{\cos x}dx=\int \frac{1}{\sin (\frac \pi 2+x)}d_{\frac \pi 2+x}=^{u=x+\frac \pi2}\\
\int \frac 1{\sin u}du=\int \csc udu\\
=\ln|\csc u-\cot u|+C
\]