最小二乘法小结

最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。

一、1.最小二乘法的原理与要解决的问题 

    最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难的。形式如下式:
\[ 目标函数 = \sum\limits(观测值-理论值)^2 \]

    观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。举一个最简单的线性回归的简单例子,比如我们有m个只有一个特征的样本:

    \((x^{(1)},y^{(1)}), (x^{(2)},y^{(2)},...(x^{(m)},y^{(m)})\)

    样本采用下面的拟合函数:

    \(h_\theta(x) = \theta_0 + \theta_1 x\)

    这样我们的样本有一个特征x,对应的拟合函数有两个参数\(\theta_0 和 \theta_1\)需要求出。

    我们的目标函数为:

    \(J(\theta_0, \theta_1) = \sum\limits_{i=1}^{m}(y^{(i)} - h_\theta(x^{(i)})^2 = \sum\limits_{i=1}^{m}(y^{(i)} -  \theta_0 - \theta_1 x^{(i)})^2 \) 

    用最小二乘法做什么呢,使\(J(\theta_0, \theta_1)\)最小,求出使\(J(\theta_0, \theta_1)\)最小时的\(\theta_0 和 \theta_1\),这样拟合函数就得出了。

    那么,最小二乘法怎么才能使\(J(\theta_0, \theta_1)\)最小呢?

二、2.最小二乘法的代数法解法

    上面提到要使\(J(\theta_0, \theta_1)\)最小,方法就是对\(\theta_0 和 \theta_1\)分别来求偏导数,令偏导数为0,得到一个关于\(\theta_0 和 \theta_1\)的二元方程组。求解这个二元方程组,就可以得到\(\theta_0 和 \theta_1\)的值。下面我们具体看看过程。

    \(J(\theta_0, \theta_1)对\theta_0\)求导,得到如下方程:

    \(\sum\limits_{i=1}^{m}(y^{(i)} -  \theta_0 - \theta_1 x^{(i)}) = 0 \)                                  ①

    \(J(\theta_0, \theta_1)对\theta_1\)求导,得到如下方程:

    \(\sum\limits_{i=1}^{m}(y^{(i)} -  \theta_0 - \theta_1 x^{(i)})x^{(i)} = 0 \)         ②

    ①和②组成一个二元一次方程组,容易求出\(\theta_0 和 \theta_1\)的值:

    

    \(\theta_0 = \sum\limits_{i=1}^{m}\big(x^{(i)})^2\sum\limits_{i=1}^{m}y^{(i)} - \sum\limits_{i=1}^{m}x^{(i)}\sum\limits_{i=1}^{m}x^{(i)}y^{(i)} \Bigg/ m\sum\limits_{i=1}^{m}\big(x^{(i)})^2 - \big(\sum\limits_{i=1}^{m}x^{(i)})^2\)

 

    \(\theta_1 = m\sum\limits_{i=1}^{m}x^{(i)}y^{(i)} - \sum\limits_{i=1}^{m}x^{(i)}\sum\limits_{i=1}^{m}y^{(i)} \Bigg/ m\sum\limits_{i=1}^{m}\big(x^{(i)})^2 - \big(\sum\limits_{i=1}^{m}x^{(i)})^2\)

 

    这个方法很容易推广到多个样本特征的线性拟合。

    拟合函数表示为 \(h_\theta(x_1, x_2, ...x_n) = \theta_0 + \theta_{1}x_1 + ... + \theta_{n}x_{n}\), 其中$\theta_i $ (i = 0,1,2... n)为模型参数,$x_i $ (i = 0,1,2... n)为每个样本的n个特征值。这个表示可以简化,我们增加一个特征$x_0 = 1 $ ,这样拟合函数表示为:

    \(h_\theta(x_0, x_1, ...x_n) = \sum\limits_{i=0}^{n}\theta_{i}x_{i}\)

    损失函数表示为:

           \(J(\theta_0, \theta_1..., \theta_n) = \sum\limits_{j=1}^{m}(h_\theta(x_0^{(j)}), x_1^{(j)}, ...x_n^{(j)})) - y^{(j)}))^2 = \sum\limits_{j=1}^{m}(\sum\limits_{i=0}^{n}\theta_{i}x_{i}^{(j)}- y^{(j)})^2 \)

    利用损失函数分别对\(\theta_i\)(i=0,1,...n)求导,并令导数为0可得:

    \(\sum\limits_{j=0}^{m}(\sum\limits_{i=0}^{n}(\theta_{i}x_{i}^{(j)} - y^{(j)})x_i^{(j)}\) = 0   (i=0,1,...n)

    这样我们得到一个N+1元一次方程组,这个方程组有N+1个方程,求解这个方程,就可以得到所有的N+1个未知的\(\theta\)

    

    这个方法很容易推广到多个样本特征的非线性拟合。原理和上面的一样,都是用损失函数对各个参数求导取0,然后求解方程组得到参数值。这里就不累述了。

 

三、3.最小二乘法的矩阵法解法

    矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。

    这里用上面的多元线性回归例子来描述矩阵法解法。

    

    假设函数\(h_\theta(x_1, x_2, ...x_n) = \theta_0 + \theta_{1}x_1 + ... + \theta_{n-1}x_{n-1}\)的矩阵表达方式为:

     \(h_\mathbf{\theta}(\mathbf{x}) = \mathbf{X\theta}\) 

    其中, 假设函数\(h_\mathbf{\theta}(\mathbf{X})\)为mx1的向量,\(\mathbf{\theta}\)为nx1的向量,里面有n个代数法的模型参数。\(\mathbf{X}\)为mxn维的矩阵。m代表样本的个数,n代表样本的特征数。

    损失函数定义为\(J(\mathbf\theta) = \frac{1}{2}(\mathbf{X\theta} - \mathbf{Y})^T(\mathbf{X\theta} - \mathbf{Y})\)

    其中\(\mathbf{Y}\)是样本的输出向量,维度为mx1.
\[ \frac{1}{2} \]
在这主要是为了求导后系数为1,方便计算。
    根据最小二乘法的原理,我们要对这个损失函数对\(\mathbf{\theta}\)向量求导取0。结果如下式:

    $\frac{\partial}{\partial\mathbf\theta}J(\mathbf\theta) = \mathbf{X}^T(\mathbf{X\theta} - \mathbf{Y}) = 0 $

    这里面用到了矩阵求导链式法则,和两个个矩阵求导的公式。

      公式1:\(\frac{\partial}{\partial\mathbf{x}}(\mathbf{x^Tx}) =2\mathbf{x}\;\;x为向量\)

      公式2:\(\nabla_Xf(AX+B) = A^T\nabla_Yf,\;\; Y=AX+B,\;\;f(Y)为标量\)

    对上述求导等式整理后可得:

    $ \mathbf{X^{T}X\theta} = \mathbf{X^{T}Y} $

    两边同时左乘\((\mathbf{X^{T}X})^{-1}\)可得:

    $ \mathbf{\theta} = (\mathbf{X^{T}X})^{-1}\mathbf{X^{T}Y} $

    这样我们就一下子求出了\(\theta\)向量表达式的公式,免去了代数法一个个去求导的麻烦。只要给了数据,我们就可以用$ \mathbf{\theta} = (\mathbf{X^{T}X})^{-1}\mathbf{X^{T}Y} \(算出\)\theta$。

 

四、4.最小二乘法的局限性和适用场景  

    从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。

    首先,最小二乘法需要计算\(\mathbf{X^{T}X}\)的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了,此时梯度下降法仍然可以使用。当然,我们可以通过对样本数据进行整理,去掉冗余特征。让\(\mathbf{X^{T}X}\)的行列式不为0,然后继续使用最小二乘法。

    第二,当样本特征n非常的大的时候,计算\(\mathbf{X^{T}X}\)的逆矩阵是一个非常耗时的工作(nxn的矩阵求逆),甚至不可行。此时以梯度下降为代表的迭代法仍然可以使用。那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。

    第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用,此时梯度下降仍然可以用。

    第四,讲一些特殊情况。当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,常用的优化方法都无法去拟合数据。当样本量m等于特征数n的时候,用方程组求解就可以了。当m大于n时,拟合方程是超定的,也就是我们常用与最小二乘法的场景了。

 

(欢迎转载,转载请注明出处。欢迎沟通交流: 微信:nickchen121)

posted @ 2019-07-19 17:56  十七岁的有德  阅读(...)  评论(... 编辑 收藏