推导数据list_comprehension
利用sorted() , BIF, set()处理数据文件
'''#打开txt文件并将其转换为列表且去除空格 with open ('james.txt') as jaf: data = jaf.readline() james = data.strip().split(',') with open ('julie.txt') as juf: data = juf.readline() julie = data.strip().split(',') with open ('mikey.txt') as mif: data = mif.readline() mikey = data.strip().split(',') with open ('sarah.txt') as saf: data = saf.readline() sarah = data.strip().split(',')''' #调用get_coach_data函数处理文档 from open_file import get_coach_data james = get_coach_data('james.txt') julie = get_coach_data('julie.txt') mikey = get_coach_data('mikey.txt') sarah = get_coach_data('sarah.txt') #调用sanitize函数,并利用推导列表格式格式化数据 from sanitize import sanitize james = sorted(set([sanitize(a) for a in james])) #利用set()方法来去除重复项,set()方法是无序的集合不能切片 julie = sorted(set([sanitize(b) for b in julie])) #利用sorted()方法对数据列进行排序,并保存了原来的数据列 mikey = sorted(set([sanitize(c) for c in mikey])) sarah = sorted(set([sanitize(d) for d in sarah])) '''#去除重复数据 james = [] julie = [] mikey = [] sarah = [] for x in clean_james: if x not in james: #james.append(x) for x in clean_julie: if x not in julie: julie.append(x) for x in clean_mikey: if x not in mikey: mikey.append(x) for x in clean_sarah: if x not in sarah: sarah.append(x)''' #利用切片打印去重后的数据 print(james[0:3]) print(julie[0:3]) print(mikey[0:3]) print(sarah[0:3])
1.调用的文件处理函数get_coach_data
#定义函数get_coach_data将文档转化为数列 def get_coach_data(filename): try: with open (filename) as f: data = f.readline() return(data.strip().split(',')) except IOError as ioerr: print('File error:' + str(ioerr)) #报错 return(None) #并返回None,指示失败
2.调用的数据格式化函数sanitize
#定义sanitize函数格式化数据 def sanitize(time_string): try: if '-' in time_string: splitter = '-' elif ':' in time_string: splitter = ':' else: return(time_string) #返回格式化的数据 (mins, secs) = time_string.split(splitter) return(mins + '.'+secs) except: print ('values error')

浙公网安备 33010602011771号