Python数字图像处理1

原博文:(31条消息) [Python从零到壹] 三十三.图像处理基础篇之什么是图像处理和OpenCV配置_Eastmount的博客-CSDN博客

一、Python语言

既是解释性编程语言,又是面向对象的语言,其操作性和可移植性高,被广泛应用于数据挖掘、图像处理、人工智能领域。Python具有语言清晰、容易学习、高效率的数据结构、丰富且功能强大的第三方包等优势。同时,Python语言含有高效率的数据结构,它和其他的面向对象编程语言一样,具有参数、列表表达式、函数、流程控制(循环与分支)、类、对象等功能。Python优雅的语法以及解释性的本质,使其成为一种能在多种功能、多种平台上撰写脚本及快速开发的理想语言[5]。

 

Python的具体优势如下:

  • 语法清晰,代码友好,易读性好
  • 应用广泛,具有大量的第三方库支持,包括机器学习、人工智能等
  • Python可移植性强,易于操作各种存储数据的文本文件和数据库
  • Python是一门面向对象语言,支持开源思想

Python有很多第三方模块,这些模块中集成了很多有用的函数。

主要通过Python调用OpenCV、Matplotlib、Numpy、Sklearn(机器学习库)等第三方包实现图像处理
Python pip命令工具来安装模块--pip install 模块名

 

二、、关于OpenCV

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac 操作系统上。它是一个由C/C++语言编写而成的轻量级并且高效的库,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法

 

三、、关于Numpy(Numerical Python)

NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

 

四、图像处理

数字图像处理(Digital Image Processing)又称为计算机图像处理(Computer Image Processing),旨在将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,常用的处理方法包括图像增强、复原、编码、压缩等。随着图像处理技术的深入发展,从70年代中期开始,计算机技术和人工智能、思维科学研究迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。现如今,图像处理取得了不少重要的研究成果,其在许多领域(如通信、气象、生物、医学、物理、经济、文化等)已经得到广泛的应用。

五、图像处理基础

图像都是由像素(pixel)构成的,像素表示为图像中的小方格,这些小方格都有一个明确的位置和被分配的色彩数值,而这些小方格的颜色和位置就决定该图像所呈现出来的样子。像素是图像中的最小单位,每一个点阵图像包含了一定量的像素,这些像素决定图像在屏幕上所呈现的大小。图1-2表示一张由像素组成的叮当猫。

 

 

图像通常分为二值图像、灰度图像和彩色图像。

灰度图像:

灰度图像是指每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息,如图1-5所示。改变像素矩阵的RGB值可以实现将彩色图转变为灰度图。常见的方法是将灰度划分为256种不同的颜色,将原来的RGB(R,G,B)中的R、G、B统一替换为Gray,形成新的颜色RGB(Gray,Gray,Gray),即灰度图。将彩色图像转换为灰度图是图像处理的最基本预处理操作

 

posted @ 2022-03-31 00:58  nanaa  阅读(32)  评论(0编辑  收藏  举报