Does large quantum Fisher information imply Bell correlations?
DOI: 10.1103/PhysRevA.99.040101
Eq(8):
Try to use Lagerange's multipliers method, only find it too complicated:
\[\begin{cases}
\sum_{n=1}{\frac{p_nn^2}{1+p_0}}\\
\sum_{n=1}{p_nn}=\left( 1+p_0 \right) \bar{n}\\
\sum_{n=0}{p_n}=1\\
\end{cases}
\\
\begin{cases}
\frac{n^2}{1+p_0}=\alpha n+\beta\\
\sum_{n=1}{p_nn}=\left( 1+p_0 \right) \bar{n}\\
\sum_{n=0}{p_n}=1\\
\end{cases}
\\
\begin{cases}
\frac{p_1+4p_2}{1+p_0}\\
p_1+2p_2-\left( 1+p_0 \right) \bar{n}=0\\
p_0+p_1+p_2=1\\
p_0-a^2=0\\
p_1-b^2=0\\
p_2-c^2=0\\
\end{cases}
\\
\begin{cases}
-\frac{p_1+4p_2}{\left( 1+p_0 \right) ^2}=-\lambda _1\bar{n}+\lambda _2+\lambda _3\\
\frac{1}{1+p_0}=\lambda _1+\lambda _2+\lambda _4\\
\frac{4}{1+p_0}=2\lambda _1+\lambda _2+\lambda _5\\
0=-2a\lambda _3\\
0=-2b\lambda _4\\
0=-2c\lambda _5\\
p_1+2p_2-\left( 1+p_0 \right) \bar{n}=0\\
p_0+p_1+p_2=1\\
p_0-a^2=0\\
p_1-b^2=0\\
p_2-c^2=0\\
\end{cases}
\\
\begin{cases}
-\frac{p_1+4p_2}{\left( 1+p_0 \right) ^2}=-\lambda _1\bar{n}+\lambda _2\\
\frac{1}{1+p_0}=\lambda _1+\lambda _2\\
\frac{4}{1+p_0}=2\lambda _1+\lambda _2\\
p_1=0\\
p_1+2p_2-\left( 1+p_0 \right) \bar{n}=0\\
p_0+p_1+p_2=1\\
p_0-a^2=0\\
p_1-b^2=0\\
p_2-c^2=0\\
\end{cases}
\]