随笔分类 -  QCQI

Quantum Computation and Quantum Informaion
摘要:Werner state is all the quantum state commute with unitary group of form $U\otimes U$. We can write it with explicit matrix form by referring to Symme 阅读全文
posted @ 2022-11-08 21:44 narip 阅读(24) 评论(0) 推荐(0)
摘要:$$\left( U\otimes \bar{U} \right) |\omega \rangle =\left( U\otimes \bar{U} \right) \frac{1}{\sqrt{2}}\left( |00\rangle +|11\rangle \right) \ \langle 0 阅读全文
posted @ 2022-09-11 16:22 narip 阅读(26) 评论(0) 推荐(0)
摘要:I will give an extended explanation of Nielsen's proof, i.e. your first ref link. The idea is that, $\rho=\sum_ip_i|i\rangle\langle i|$, we can prove 阅读全文
posted @ 2022-09-11 13:47 narip 阅读(24) 评论(0) 推荐(0)
摘要:Wikipedia about quantum entanglement give definition of maximally entangled state for only bipartite state, the definition is that the reduced state $ 阅读全文
posted @ 2022-07-28 15:31 narip 阅读(27) 评论(0) 推荐(0)
摘要:QuEst simulator Qiskit PennyLane library for quantum machine learning. 阅读全文
posted @ 2022-07-28 13:52 narip 阅读(23) 评论(0) 推荐(0)
摘要:We have mathematica code for three tuples $(p_1,p_2,p_3)$ showing that even we have VNE equal, we might have the tuples differ. Plot3D[-Subscript[p, 1 阅读全文
posted @ 2022-07-24 20:56 narip 阅读(33) 评论(0) 推荐(0)
摘要:Amplitude damping/spontaneous emission $$ K_0= \begin{pmatrix} 1 & 0\ 0 & \sqrt{\eta} \end{pmatrix}, K_1= \begin{pmatrix} 0 & \sqrt{1-\eta}\ 0 & 0 \en 阅读全文
posted @ 2022-07-16 15:59 narip 阅读(52) 评论(0) 推荐(0)
摘要:Theorem Any n qubtis state can be represented by combination of product of pauli matrix of 2 qubtis, that is \(\{I,X,Y,Z\}^{\otimes n}\). Further, any 阅读全文
posted @ 2022-04-22 22:03 narip 阅读(41) 评论(0) 推荐(0)
摘要:In Nielsen and Chuang's QCQI, there are three kinds of measurement: general measurement, projective measurement, positive operator valued measurement( 阅读全文
posted @ 2022-04-22 22:02 narip 阅读(55) 评论(0) 推荐(0)
摘要:Quasi Probability method clear all; clc; theta = pi/4; p = 0.3; % initial state psi = 1/sqrt(2)*[1;exp(1j*theta)]; rho = psi*psi'; sx = [0 1;1 0]; sy 阅读全文
posted @ 2022-04-22 22:02 narip 阅读(60) 评论(0) 推荐(0)
摘要:Quantum Fourier Transform: $$\sum_{j=0}{N-1}{x_j|j\rangle}\Rightarrow \sum_{j=0}{N-1}{x_j\frac{1}{\sqrt{N}}\sum_{k=0}{N-1}{e{2\pi i\frac{jk}{N}}|k\ran 阅读全文
posted @ 2022-03-20 16:57 narip 阅读(27) 评论(0) 推荐(0)