1. C语言动态分配二维数组
(1)已知第二维
(2)已知第一维
(3)已知第一维,一次分配内存(保证内存的连续性)
(4)两维都未知
(5)两维都未知,一次分配内存(保证内存的连续性)
2.C++动态分配二维数组
(1)已知第二维
(2)已知第一维
(3)已知第一维,一次分配内存(保证内存的连续性)
(4)两维都未知
(5)两维都未知,一次分配内存(保证内存的连续性)
多说一句:new和delete要注意配对使用,即有多少个new就有多少个delete,这样才可以避免内存泄漏!
3.静态二维数组作为函数参数传递
如果采用上述几种方法动态分配二维数组,那么将对应的数据类型作为函数参数就可以了。这里讨论静态二维数组作为函数参数传递,即按照以下的调用方式:
int a[2][3];
func(a);
C语言中将静态二维数组作为参数传递比较麻烦,一般需要指明第二维的长度,如果不给定第二维长度,则只能先将其作为一维指针传递,然后利用二维数组的线性存储特性,在函数体内转化为对指定元素的访问。
首先写好测试代码,以验证参数传递的正确性:
(1)给定第二维长度
(2)不给定第二维长度
注意:使用该函数时需要将二维数组首地址强制转换为一维指针,即func((int*)a);
维数组new小结
1.
A (*ga)[n] = new A[m][n];
...
delete []ga;
缺点:n必须是已知
优点:调用直观,连续储存,程序简洁(经过测试,析构函数能正确调用)
2. A** ga = new A*[m];
for(int i = 0; i < m; i++)
ga[i] = new A[n];
...
for(int i = 0; i < m; i++)
delete []ga[i];
delete []ga;
缺点:非连续储存,程序烦琐,ga为A**类型
优点:调用直观,n可以不是已知
3. A* ga = new A[m*n];
...
delete []ga;
缺点:调用不够直观
优点:连续储存,n可以不是已知
4. vector > ga;
ga.resize(m); //这三行可用可不用
for(int i = 1; i < n; i++) //
ga[i].resize(n); //
...
缺点:非连续储存,调试不够方便,编译速度下降,程序膨胀(实际速度差别不大)
优点:调用直观,自动析构与释放内存,可以调用stl相关函数,动态增长
5. vector ga;
ga.resize(m*n);
方法3,4的结合
6. 2的改进版
A** ga = new A*[m];
ga[0] = new A[m*n];
for(int i = 1; i < m; i++)
ga[i] = ga[i-1]+n;
优点:连续存储,n可以不是已知,析构方便,猜想只需delete [] ga;
1.
A (*ga)[n] = new A[m][n];
...
delete []ga;
缺点:n必须是已知
优点:调用直观,连续储存,程序简洁(经过测试,析构函数能正确调用)
2. A** ga = new A*[m];
for(int i = 0; i < m; i++)
ga[i] = new A[n];
...
for(int i = 0; i < m; i++)
delete []ga[i];
delete []ga;
缺点:非连续储存,程序烦琐,ga为A**类型
优点:调用直观,n可以不是已知
3. A* ga = new A[m*n];
...
delete []ga;
缺点:调用不够直观
优点:连续储存,n可以不是已知
4. vector
ga.resize(m); //这三行可用可不用
for(int i = 1; i < n; i++) //
ga[i].resize(n); //
...
缺点:非连续储存,调试不够方便,编译速度下降,程序膨胀(实际速度差别不大)
优点:调用直观,自动析构与释放内存,可以调用stl相关函数,动态增长
5. vector ga;
ga.resize(m*n);
方法3,4的结合
6. 2的改进版
A** ga = new A*[m];
ga[0] = new A[m*n];
for(int i = 1; i < m; i++)
ga[i] = ga[i-1]+n;
优点:连续存储,n可以不是已知,析构方便,猜想只需delete [] ga;
问题:
1.怎么进行多维数组的声明和初始化?
2.是否能够动态分配多维数组,怎么样正确析构?
3.怎么理解这些操作?