http://coolshell.cn/articles/11564.html
TCP在网络OSI的七层模型中的第四层——Transport层,IP在第三层——Network层,ARP在第二层——Data Link层,在第二层上的数据,我们叫Frame,在第三层上的数据叫Packet,第四层的数据叫Segment。
- TCP的包是没有IP地址的,那是IP层上的事。但是有源端口和目标端口。
网络上的传输是没有连接的,包括TCP也是一样的。而TCP所谓的“连接”,其实只不过是在通讯的双方维护一个“连接状态”,让它看上去好像有连接一样。所以,TCP的状态变换是非常重要的。
- Sequence Number是包的序号,用来解决网络包乱序(reordering)问题。
- Acknowledgement Number就是ACK——用于确认收到,用来解决不丢包的问题。
- Window又叫Advertised-Window,也就是著名的滑动窗口(Sliding Window),用于解决流控的。
- TCP Flag ,也就是包的类型,主要是用于操控TCP的状态机的。
对于建链接的3次握手,主要是要初始化Sequence Number 的初始值。通信的双方要互相通知对方自己的初始化的Sequence Number(缩写为ISN:Inital Sequence Number)——所以叫SYN,全称Synchronize Sequence Numbers。
对于4次挥手,其实你仔细看是2次,因为TCP是全双工的,所以,发送方和接收方都需要Fin和Ack。只不过,有一方是被动的,所以看上去就成了所谓的4次挥手。如果两边同时断连接,那就会就进入到CLOSING状态,然后到达TIME_WAIT状态。
快速重传机制
于是,TCP引入了一种叫Fast Retransmit 的算法,不以时间驱动,而以数据驱动重传。也就是说,如果,包没有连续到达,就ack最后那个可能被丢了的包,如果发送方连续收到3次相同的ack,就重传。Fast Retransmit的好处是不用等timeout了再重传。
比如:如果发送方发出了1,2,3,4,5份数据,第一份先到送了,于是就ack回2,结果2因为某些原因没收到,3到达了,于是还是ack回2,后面的4和5都到了,但是还是ack回2,因为2还是没有收到,于是发送端收到了三个ack=2的确认,知道了2还没有到,于是就马上重转2。然后,接收端收到了2,此时因为3,4,5都收到了,于是ack回6。示意图如下:
Fast Retransmit只解决了一个问题,就是timeout的问题,它依然面临一个艰难的选择,就是重转之前的一个还是重装所有的问题。对于上面的示例来说,是重传#2呢还是重传#2,#3,#4,#5呢?因为发送端并不清楚这连续的3个ack(2)是谁传回来的?也许发送端发了20份数据,是#6,#10,#20传来的呢。这样,发送端很有可能要重传从2到20的这堆数据(这就是某些TCP的实际的实现)。可见,这是一把双刃剑。
======
- 快速重传机制
在超时重传中,重点是定时器溢出超时了才认为发送的数据包丢失,快速重传机制,实现了另外的一种丢包评定标准,即如果我连续收到3次dup ACK,发送方就认为这个seq的包丢失了,立刻进行重传,这样如果接收端回复及时的话,基本就是在重传定时器到期之前,提高了重传的效率。
在传输过程中会出现out-of-order的现象,但是在滑动窗口中会有严格的顺序控制,假设有4,5,6三个待接收的数据包,先收到了5,6,协议栈是不会回复对5,6包的确认,而是根据TCP协议的规定,当接收方收到乱序片段时,需要重复发送ACK, 在这个地方会发送报文4 seq的ACK,表明需要报文4没有被接收到,如果此后收到的是报文7,那么仍然要回报文4 seq的ACK,如果连续发送3个 dup ACK,接收端认为这个片段已经丢失,进行快速重传。
看一个简单的例子:这是下载过程中网络不好抓的tcpdump
1. 145/153/170 是3个dup ACK
2. 171包,快速重传
不过快速重传能够解决超时的问题,但是对于之前讨论的究竟重传哪些包的问题,依然不能有效的解决,这就需要TCP中提供的SACK机制来解决。