tensorflow mnist
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #下载相应的文件放在本地目录 mnist = input_data.read_data_sets("D:/work_space/eclipse/Pydev/MNIST_data", one_hot=True) print("---mnist info-----") print(mnist.train.images.shape, mnist.train.labels.shape) print(mnist.test.images.shape, mnist.test.labels.shape) print(mnist.validation.images.shape, mnist.validation.labels.shape) x = tf.placeholder(tf.float32, [None, 784], name='x') W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b, name='y') y_ = tf.placeholder(tf.float32, [None, 10], 'y_') cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) init = tf.global_variables_initializer() # m_saver = tf.train.Saver() with tf.Session() as sess: sess.run(init)
#训练集 for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys}) m_saver.save(sess, "D:/model_path/model_name", global_step=i) #保存模型
#验证测试集 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
---mnist info-----
(55000, 784) (55000, 10)
(10000, 784) (10000, 10)
(5000, 784) (5000, 10)
0.9169
下面读取模型来验证结果
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #下载相应的文件放在本地目录 mnist = input_data.read_data_sets("D:/work_space/eclipse/Pydev/MNIST_data", one_hot=True) print("---mnist info-----") print(mnist.train.images.shape, mnist.train.labels.shape) print(mnist.test.images.shape, mnist.test.labels.shape) print(mnist.validation.images.shape, mnist.validation.labels.shape) init = tf.global_variables_initializer() saver = tf.train.import_meta_graph("D:/model_path/model_name-999.meta") with tf.Session() as sess: sess.run(init) #model_file=tf.train.latest_checkpoint('D:/model_path/model_name-999') saver.restore(sess, 'D:/model_path/model_name-999') #读取模型 #这里取别名 x1 = tf.get_default_graph().get_tensor_by_name("x:0") y1 = tf.get_default_graph().get_tensor_by_name("y:0") y_1 = tf.get_default_graph().get_tensor_by_name("y_:0") correct_prediction = tf.equal(tf.argmax(y1, 1), tf.argmax(y_1, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x1: mnist.test.images, y_1: mnist.test.labels}))
---mnist info-----
(55000, 784) (55000, 10)
(10000, 784) (10000, 10)
(5000, 784) (5000, 10)
0.9169

浙公网安备 33010602011771号