随笔分类 - C++
摘要:一、STL简介 STL提供六大组件,彼此可以组合套用: 二、关于容器的一些问题 2.1 当vector的内存用完了,它是如何动态扩展内存的?它是怎么释放内存的?用clear可以释放掉内存吗?是不是线程安全的? 2.2 map是怎么实现的?查找的复杂度是多少?能不能边遍历边插入? 红黑树和散列 O(l
阅读全文
摘要:STL概貌 STL 包含 5 个主要的部分 ·算法(Algorithm):能运行在不同容器(container)上的计算过程 ·容器(Container):能够保留并管理对象的对象 ·迭代器(Iterator):算法存取容器(algorithm-access to containers)的抽象,以便
阅读全文
摘要:一、狄杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。 此外
阅读全文
摘要:一、介绍 希尔排序(Shell Sort)是插入排序的一种,它是针对直接插入排序算法的改进。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。 希尔排序实质上是一种分组插入方法。它的基本思想是:对于n个待排序的数列,取一个小于n的整数gap(gap被称为步长)将待排序元素分成若干个组
阅读全文
摘要:一、介绍 直接插入排序(Straight Insertion Sort)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表。开始时有序表中只包含1个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,将它插入到有序表中的适当位置,使之成为新的有序表,重复n-1次可完成
阅读全文
摘要:一、介绍 快速排序(Quick Sort)使用分治法策略。它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 快速排
阅读全文
摘要:一、介绍 冒泡排序(Bubble Sort),又被称为气泡排序或泡沫排序。 它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者比后者大,则交换它们的位置。这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大
阅读全文
摘要:一 普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。 基本思想 对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值
阅读全文
摘要:一、 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。 例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。 二、克鲁斯卡尔算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图
阅读全文
摘要:一、拓扑排序介绍 拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。 这样说,可能理解起来比较抽象。下面通过简单的例子进行说明! 例如,一个项目包括A、B、C、D四个子部分来完成,并且A依
阅读全文
摘要:一、介绍 邻接表有向图是指通过邻接表表示的有向图。 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。 上图右边的矩阵是G2在内存中的邻接表示意图。每一个顶点都
阅读全文
摘要:一、邻接矩阵有向图的介绍 邻接矩阵有向图是指通过邻接矩阵表示的有向图。 待补充; 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。 上图右边的矩阵是G2在内存
阅读全文
摘要:一、邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图。 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。 上图右边的矩阵是G1在内存中的邻接表示意图。每一个顶点都包含一条链
阅读全文
摘要:一、邻接矩阵无向图的介绍 邻接矩阵无向图是指通过邻接矩阵表示的无向图。 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。由于这是无向图,所以边(A,C)和边(C,A)是同一条边;这里
阅读全文
摘要:一、介绍 斐波那契堆(Fibonacci heap)是一种可合并堆,可用于实现合并优先队列。它比二项堆具有更好的平摊分析性能,它的合并操作的时间复杂度是O(1)。与二项堆一样,它也是由一组堆最小有序树组成,并且是一种可合并堆。与二项堆不同的是,斐波那契堆中的树不一定是二项树;而且二项堆中的树是有序排
阅读全文
摘要:二项树的介绍 二项树的定义 二项堆是二项树的集合。在了解二项堆之前,先对二项树进行介绍。 二项树是一种递归定义的有序树。它的递归定义如下:(01) 二项树B0只有一个结点;(02) 二项树Bk由两棵二项树B(k-1)组成的,其中一棵树是另一棵树根的最左孩子。如下图所示: 上图的B0、B1、B2、B3
阅读全文
摘要:一、斜堆的介绍 斜堆(Skew heap)也叫自适应堆(self-adjusting heap),它是左倾堆的一个变种。和左倾堆一样,它通常也用于实现优先队列;作为一种自适应的左倾堆,它的合并操作的时间复杂度也是O(lg n)。它与左倾堆的差别是:(01) 斜堆的节点没有"零距离"这个属性,而左倾堆
阅读全文
摘要:一、左倾堆的介绍 左倾堆(leftist tree 或 leftist heap),又被成为左偏树、左偏堆,最左堆等。它和二叉堆一样,都是优先队列实现方式。当优先队列中涉及到"对两个优先队列进行合并"的问题时,二叉堆的效率就无法令人满意了,而本文介绍的左倾堆,则可以很好地解决这类问题。 左倾堆的定义
阅读全文
摘要:二叉堆的介绍 二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下: 二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存
阅读全文
摘要:哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。 (01) 路径和路径长度 定义
阅读全文


浙公网安备 33010602011771号