from xmindparser import xmind_to_dict
import pandas as pd
from openpyxl.workbook import Workbook
import os
# 可以设想为一个树结构,利用递归函数,获取由根至各叶子节点的路径。
def xm_parse(dic, pre_data=[]):
"""输入一个由xmindparser,转换而来的字典形式的数据,将之转换成列表"""
title_list = []
topic_list = []
try:
topics = dic.get("topics")
title = dic.get("title")
# 将前缀追加
title_list.append(title)
title_list = pre_data + title_list
# 如果到达末尾,就返回
if topics is None and title:
yield title, title_list
# print(title,title_list)
return
# 如果是列表,就暂存起来(若每个对象为标准的列表,即 topics= topic_list,则可以跳过该步骤)
elif isinstance(topics, list) and title:
for topic in topics:
topic_list.append(topic)
except AttributeError as e:
print("异常结束")
return
if topic_list:
for topic in topic_list:
yield from xm_parse(topic, title_list)
def main():
currently_path = os.getcwd()
for filename in os.listdir(currently_path):
if filename.endswith('.xmind'):
xm_path = currently_path + "/" + filename
break
x_flie = xm_path
new_filename = filename[:-6] + ".xlsx"
out_file = currently_path + "/" + new_filename
temp = []
max_cols = 0
json_data = xmind_to_dict(x_flie)
# 提取数据,并找出最大深度(列数)
for i, j in xm_parse(json_data[0]['topic']):
temp.append(j)
max_cols = max_cols if max_cols > len(j) else len(j)
# 对缺失数据采用补全
for i in range(len(temp)):
temp[i] = temp[i] + (max_cols - len(temp[i])) * [None]
result = pd.DataFrame.from_records(temp, columns=["标题-{}".format(i + 1) for i in range(max_cols)])
# result.to_excel(out_file,index=False,encoding='utf-8-sig')
result.to_excel(out_file, index=False)
if __name__ == '__main__':
main()