from __future__ import print_function
import tensorflow as tf
import os
import shutil
tf_dir = '../generate_tfrecord_by_me_part'
tf_list = [os.path.join(tf_dir,f) for f in os.listdir(tf_dir) ]
print("tfrecord files are {}".format(tf_list))
def extract_tfrecords_features(tfrecords_file):
"""Extract features in a tfrecords file for parsing a series of tfrecords files."""
tfrecords_iterator = tf.python_io.tf_record_iterator(tfrecords_file)
for record in tfrecords_iterator:
example = tf.train.Example()
example.ParseFromString(record)
features = example.features.feature
#print("the features is:{}\n".format(features))
tf_frame_id = features['frame/id'].bytes_list.value
#print("the frame_id is:{}\n".format(tf_frame_id))
frame_id = tf_frame_id[0]
frame = '../' + frame_id + '.jpg'
#print(frame)
shutil.copy(frame,'./images')
label = '../label/' + frame_id.split('/')[-1] + '.txt'
#print(label)
shutil.copy(label,'./labels')
if __name__ == '__main__':
for t in tf_list:
#print("current tfrecord file is {}".format(t))
result = extract_tfrecords_features(t)