pytorch nn model
https://pytorch.org/docs/stable/nn.html
me@me:~/me$ cat 0702.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3) # 1 means 1 channel
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
params = list(net.parameters())
print("Total params are {}".format(len(params)))
print("conv1's .weight is: {}".format(params[0].size())) # conv1's .weight
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
net.zero_grad()
out.backward(torch.randn(1, 10))
print(out)
me@me:~/me$ python 0702.py
Net(
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=576, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
Total params are 10
conv1's .weight is: torch.Size([6, 1, 3, 3])
tensor([[ 0.0102, 0.0036, -0.0183, 0.0757, -0.0053, -0.0685, 0.1568, -0.0227,
-0.0635, 0.0711]], grad_fn=<AddmmBackward>)
tensor([[ 0.0102, 0.0036, -0.0183, 0.0757, -0.0053, -0.0685, 0.1568, -0.0227,
-0.0635, 0.0711]], grad_fn=<AddmmBackward>)
浙公网安备 33010602011771号