随笔分类 -  🍵 论文阅读

摘要:Deep reinforcement learning from human preferences 论文阅读,以及 PrefPPO 算法阅读。 阅读全文
posted @ 2024-11-20 15:16 MoonOut 阅读(311) 评论(0) 推荐(0)
摘要:① 假设正确样本的 CELoss 上限是 ρ,可推出错误样本相对 P_ψ(x) 分布的 KL 散度上限,从而筛出可信样本、翻转不可信样本;② 用归一化到 (-1,1) 的 intrinsic reward 预训练 reward model。 阅读全文
posted @ 2024-07-25 16:10 MoonOut 阅读(214) 评论(0) 推荐(0)
摘要:ELBO 用于最小化 q(z|s) 和 p(z|s) 的 KL 散度,变成最大化 p(x|z) 的 log likelihood + 最小化 q(z|s) 和先验 p(z) 的 KL 散度。 阅读全文
posted @ 2024-06-23 18:10 MoonOut 阅读(2251) 评论(0) 推荐(1)
摘要:简单看了一下三大会近期的 Multi-objective RL 工作。 阅读全文
posted @ 2024-05-28 22:31 MoonOut 阅读(1125) 评论(1) 推荐(1)
摘要:① medium:中等策略。② random:随机策略。③ medium-replay:训到中等策略的整个 replay buffer。④ medium-expert:等量混合专家数据和次优数据(次优或随机策略)。 阅读全文
posted @ 2024-03-09 17:36 MoonOut 阅读(2408) 评论(0) 推荐(0)
摘要:主要 trick:① 更新 A 时把 B stop-gradient,② 在 encoder 后添加神秘的 MLP 层。 阅读全文
posted @ 2024-03-07 20:40 MoonOut 阅读(1585) 评论(0) 推荐(0)
摘要:① 定义 non-Markovian reward 的输入是 trajectory,② 使用 exp Σ w(τ) · r(τ) 的 preference 形式。 阅读全文
posted @ 2024-03-06 12:57 MoonOut 阅读(380) 评论(0) 推荐(0)
摘要:Act as a reinforcement learning expert. Please do a review for representation learning in RL. Should focus on how to map a trajectory to a latent. 阅读全文
posted @ 2024-02-29 16:10 MoonOut 阅读(294) 评论(1) 推荐(0)
摘要:将 offline HIM 应用到 PbRL,① 用离线轨迹训练 a=π(s,z) ,② 训练最优 hindsight z* 靠近 z+ 远离 z-。 阅读全文
posted @ 2024-02-27 21:38 MoonOut 阅读(151) 评论(0) 推荐(0)
摘要:将 offline 训练轨迹中,当前时刻之后发生的事 作为 hindsight,从而训练出 想要达到当前 hindsight 的 action。 阅读全文
posted @ 2024-02-27 21:08 MoonOut 阅读(411) 评论(0) 推荐(0)
摘要:① sequence: {s, a, R, s, ...};② 在 s 的 decode 结果上加 MLP 预测 action;③ 给定 return-to-go 作为某种 hindsight。 阅读全文
posted @ 2024-02-27 20:14 MoonOut 阅读(958) 评论(0) 推荐(2)
摘要:① unlearn:保守 offline RL 训出的 Q function 太小,被 online 的真 reward 量级压制,导致 policy 初始化破坏,性能下降。② 校准:魔改 CQL 惩罚,令 Q_θ ≥ Q_β。 阅读全文
posted @ 2024-02-07 20:14 MoonOut 阅读(257) 评论(0) 推荐(0)
摘要:在 offline + online buffer 的采样概率,应当与 d^{on}(s,a) / d^{off}(s,a) 成正比(importance sampling)。 阅读全文
posted @ 2024-02-07 14:08 MoonOut 阅读(431) 评论(0) 推荐(1)
摘要:采用 policy iteration 框架,① policy evaluation 普通更新 Q function,② policy update 使用 AWR 式更新,③ 前两步的采样数据集都是 offline + online。 阅读全文
posted @ 2024-02-05 21:50 MoonOut 阅读(295) 评论(0) 推荐(1)
摘要:对于 policy improvement,maximize Q(s, π(s)) ,同时约束 π 与一个 prior policy 的 KL 散度,prior policy 用 advantage 非负的 offline 状态转移计算。 阅读全文
posted @ 2024-01-21 11:26 MoonOut 阅读(200) 评论(0) 推荐(0)
摘要:OpenReview 检索关键词:ICLR 2024、reinforcement learning、preference、human feedback。 阅读全文
posted @ 2024-01-21 11:17 MoonOut 阅读(658) 评论(0) 推荐(0)
摘要:critic loss = ① ID 数据的 TD-error + ② OOD 数据的伪 TD-error,① 对所转移去的 (s',a') 的 uncertainty 进行惩罚,② 对 (s, a_ood) 的 uncertainty 进行惩罚。 阅读全文
posted @ 2023-12-17 15:37 MoonOut 阅读(219) 评论(0) 推荐(0)
摘要:Query-Policy Misalignment:选择的看似 informative 的 query,实际上可能与 RL agent 的兴趣不一致,因此对 policy learning 帮助很小,最终导致 feedback-efficiency 低下。 阅读全文
posted @ 2023-12-17 15:28 MoonOut 阅读(147) 评论(0) 推荐(0)
摘要:贡献:提出一种生成非理性(模拟人类)preference 的方法,使用多样化的 preference,评测 PBRL 各环节算法设计(select informative queries、feedback schedule)的效果。 阅读全文
posted @ 2023-11-30 21:21 MoonOut 阅读(265) 评论(0) 推荐(0)
摘要:① 使用 VAE 建模 offline dataset 的 π(a|s),② 添加一个可以学习的 action 扰动 ξ,③ 用 (s, a=π(s)+ξ, r, s') 做 Q-learning。 阅读全文
posted @ 2023-11-27 21:29 MoonOut 阅读(390) 评论(0) 推荐(0)