Machine_Learning_in_Action04 - Naive_Bayes
Naive Bayes
使用概率分布进行分类
学习朴素贝叶斯分类器
解析 RSS 源数据
使用朴素贝叶斯来分析区域态度
- 从最简单的概率分来开始
- 然后在此基础上加入一些假设
- 然后学习朴素贝叶斯分类
基于贝叶斯决策理论的分类方法
- 朴素贝叶斯优点:
- 可以处理少量数据,可以处理多分类
- 缺点:
- 对数据敏感
- 朴素贝叶斯是贝叶斯理论的一个子集
使用朴素贝叶斯进行文档分类
在文档分类中,整个文档是一个实例,特征就是文档中的字词。
朴素贝叶斯是文档分类问题常用的方法。
- 朴素贝叶斯的一般步骤
- 收集数据:可以使用任何方法,我们使用RSS源数据
- 准备:数值型或布尔型数据
- 分析:由于特征太多,画特征图可能没用。画直方图效果更好
- 训练:计算独立特征的条件概率
- 测试:计算误差
- 应用:可以在任何场景中使用朴素贝叶斯分类器,不一定是文本
文本分类实例
import numpy as np
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', \
'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', \
'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', \
'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how',\
'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)
p0Denom = 0.0; p1Denom = 0.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom #change to log()
p0Vect = p0Num/p0Denom #change to log()
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
if __name__ == '__main__':
# dataSet, classes = loadDataSet()
# vocabs = createVocabList(dataSet)
# print(vocabs)
# trainMat=[]
# for postinDoc in dataSet:
# trainMat.append(setOfWords2Vec(vocabs, postinDoc))
# p0V,p1V,pAb=trainNB0(trainMat, classes)
# print(p0V, p1V, pAb)
testingNB()
垃圾邮件分类
## bag of word
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def textParse(bigString):
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50)); testSet=[]
for i in range(10):
randIndex = int(np.random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(np.array(trainMat),np.array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print('the error rate is: ',float(errorCount)/len(testSet))
if __name__ == '__main__':
spamTest()

浙公网安备 33010602011771号