返回的值可能会存在负数(即使传入参数a和b中的数全是正整数),若有需要可以给mul返回的结果取正
constexpr int P = 998244353;
int power(int a, int b) {
int res = 1;
for (; b; b /= 2, a = 1LL * a * a % P) {
if (b % 2) {
res = 1LL * res * a % P;
}
}
return res;
}
vector<int> rev, roots {0, 1};
void dft(vector<int> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i++) {
if (rev[i] < i) {
swap(a[i], a[rev[i]]);
}
}
if (roots.size() < n) {
int k = __builtin_ctz(roots.size());
roots.resize(n);
while ((1 << k) < n) {
int e = power(31, 1 << (__builtin_ctz(P - 1) - k - 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots[2 * i] = roots[i];
roots[2 * i + 1] = 1LL * roots[i] * e % P;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
int u = a[i + j];
int v = 1LL * a[i + j + k] * roots[k + j] % P;
a[i + j] = (u + v) % P;
a[i + j + k] = (u - v) % P;
}
}
}
}
void idft(vector<int> &a) {
int n = a.size();
reverse(a.begin() + 1, a.end());
dft(a);
int inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] = 1LL * a[i] * inv % P;
}
}
vector<int> mul(vector<int> a, vector<int> b) {
int n = 1, tot = a.size() + b.size() - 1;
while (n < tot) {
n *= 2;
}
if (tot < 128) {
vector<int> c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P;
}
}
return c;
}
a.resize(n);
b.resize(n);
dft(a);
dft(b);
for (int i = 0; i < n; i++) {
a[i] = 1LL * a[i] * b[i] % P;
}
idft(a);
a.resize(tot);
//如果有需要a[i]不能小于0,那么就需要这样办
//for(int i=0;i<n;i++)if(a[i]<0)a[i]+=P;
return a;
}
FFT模板
using Z = complex<double>;//复数类型用Z表示
const double pi = acos(-1);
vector<Z> w;
void init(int n) {
w.resize(n);
for (int i = 0; i < n; ++i) {
w[i] = exp(Z(0, 2 * pi / n * i));
}
}
void FFT(vector<Z>& a, int inv) {
int n = (int)a.size();
for (int i = 0, j = 0; i < n; ++i) {
if (i < j) swap(a[i], a[j]);
for (int k = n / 2; (j ^= k) < k; k /= 2);
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += k * 2) {
for (int j = 0; j < k; ++j) {
Z wn(w[(int)w.size() / k / 2 * j]);
if (inv) wn = conj(wn);
Z t = a[i + j + k] * wn;
a[i + j + k] = a[i + j] - t;
a[i + j] += t;
}
}
}
if (inv) for (auto& x : a) x /= n;
}
vector<int> PolyMul(vector<int> a, vector<int> b) {
vector<Z> f(a.begin(), a.end()), g(b.begin(), b.end());
int N = 1;
for (; N < int(f.size() + g.size()); N *= 2);
f.resize(N), g.resize(N);
init(N);
FFT(f, 0), FFT(g, 0);
vector<Z> h(N);
for (int i = 0; i < N; ++i) {
h[i] = f[i] * g[i];
}
FFT(h, 1);
vector<int> c(N);
for (int i = 0; i < N; ++i) {
c[i] = round(h[i].real());
}
return c;
}