摘要: 数据降维 分类 + PCA(主成分分析降维) + 相关系数降维 PCA 降维(不常用) 实现思路 + 对数据进行 标准化 + 计算出数据的 相关系数矩阵 (是方阵, 维度是nxn, n是特征的数量) + 计算出 相关系数矩阵 的特征值和特征向量(虽然这里说的是向量, 但是是矩阵, 这个矩阵的每一列都 阅读全文
posted @ 2018-11-16 23:54 gogogo11 阅读(870) 评论(0) 推荐(0)
摘要: 机器学习中的常用操作 + 输入节点到隐藏节点,特征数量n可能会变化,这个取决于我们定义的隐藏层的节点个数,但是样本数量m是不变的,从隐藏层出来还是m + 在预测的时候,我们需要不断的迭代输入的特征 提高精度 + 增加样本数量 解决high variance + 减少特征 解决high varianc 阅读全文
posted @ 2018-11-16 00:05 gogogo11 阅读(310) 评论(0) 推荐(0)