图片匹配
import cv2 import numpy as np def find_and_mark_image(big_path, small_path): # 读取图片 img_big = cv2.imread(big_path) img_small = cv2.imread(small_path) # 转换为灰度图 gray_big = cv2.cvtColor(img_big, cv2.COLOR_BGR2GRAY) gray_small = cv2.cvtColor(img_small, cv2.COLOR_BGR2GRAY) # 添加图像预处理 - 增加模糊程度 gray_big = cv2.GaussianBlur(gray_big, (5,5), 0) # 从(3,3)改为(5,5) gray_small = cv2.GaussianBlur(gray_small, (5,5), 0) # 增强对比度 gray_big = cv2.equalizeHist(gray_big) gray_small = cv2.equalizeHist(gray_small) # 创建SIFT对象 - 增加特征点数量 sift = cv2.SIFT_create(nfeatures=0, nOctaveLayers=5, contrastThreshold=0.04, edgeThreshold=10, sigma=1.6) # 检测特征点并计算描述符 kp1, des1 = sift.detectAndCompute(gray_small, None) kp2, des2 = sift.detectAndCompute(gray_big, None) # 创建FLANN匹配器 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=200) # 从150增加到200 flann = cv2.FlannBasedMatcher(index_params, search_params) # 进行特征匹配 matches = flann.knnMatch(des1, des2, k=2) # 筛选好的匹配点 good_matches = [] for m, n in matches: if m.distance < 0.9 * n.distance: # 从0.85提高到0.9 good_matches.append(m) if len(good_matches) >= 4: # 从6降低到4 # 获取匹配点的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 计算变换矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 7.0) # 从6.0提高到7.0 # 获取small图像的尺寸 h, w = gray_small.shape # 计算变换后的角点坐标 pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) # 在big图像上绘制红色矩形框 img_result = cv2.polylines(img_big, [np.int32(dst)], True, (0, 0, 255), 3) # 保存结果 cv2.imwrite('result.jpg', img_result) return True return False if __name__ == "__main__": result = find_and_mark_image("big.jpg", "small.jpg") if result: print("匹配成功,结果已保存为result.jpg") else: print("未找到匹配区域")