05 2024 档案
摘要:
简介 在过去的几十年里,许多机器学习(ML)方法被引入来分析呼吸周期的声音,包括爆裂声、咳嗽声和喘息声[1-6]。然而,几乎所有传统的ML模型都完全依赖于手工制作的功能。此外,需要高度复杂的预处理步骤来利用设计的特征[4-6]。因此,仅仅基于ML的模型可能对肺部声音中的外部/内部噪声不具有鲁棒性,并
阅读全文
简介 在过去的几十年里,许多机器学习(ML)方法被引入来分析呼吸周期的声音,包括爆裂声、咳嗽声和喘息声[1-6]。然而,几乎所有传统的ML模型都完全依赖于手工制作的功能。此外,需要高度复杂的预处理步骤来利用设计的特征[4-6]。因此,仅仅基于ML的模型可能对肺部声音中的外部/内部噪声不具有鲁棒性,并
阅读全文
摘要:
鸟叫声识别在鸟类保护中具有重要意义。通过适当的声音分类,研究可以自动预测该地区的生活质量。如今,深度学习模型被用于对鸟类声音数据进行高精度的分类。然而,现有的大多数鸟类声音识别模型的泛化能力较差,并且采用复杂的算法来提取鸟类声音特征。为了解决这些问题,本文构建了一个包含264种鸟类的大数据集,以增强
阅读全文
鸟叫声识别在鸟类保护中具有重要意义。通过适当的声音分类,研究可以自动预测该地区的生活质量。如今,深度学习模型被用于对鸟类声音数据进行高精度的分类。然而,现有的大多数鸟类声音识别模型的泛化能力较差,并且采用复杂的算法来提取鸟类声音特征。为了解决这些问题,本文构建了一个包含264种鸟类的大数据集,以增强
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 前言 虽然血压(BP)的测量现在广泛地由自动无创血压(NIBP)监测设备进行,因为它们不需要熟练的临床医生,也不存在并发症的风险,但其准确性仍存疑。本研究开发了一种新的基于端到端深度学习的算法,该算法直接
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 前言 虽然血压(BP)的测量现在广泛地由自动无创血压(NIBP)监测设备进行,因为它们不需要熟练的临床医生,也不存在并发症的风险,但其准确性仍存疑。本研究开发了一种新的基于端到端深度学习的算法,该算法直接
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 概要 手势识别是智能教育领域的关键技术,毫米波信号具有分辨率高、穿透能力强等优点。本文介绍了一种基于毫米波雷达的高精度、鲁棒的手势识别方法。该方法包括用毫米波雷达模块捕获手部运动的原始信号,并对接收到的雷
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 概要 手势识别是智能教育领域的关键技术,毫米波信号具有分辨率高、穿透能力强等优点。本文介绍了一种基于毫米波雷达的高精度、鲁棒的手势识别方法。该方法包括用毫米波雷达模块捕获手部运动的原始信号,并对接收到的雷
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 关键词识别 (KWS) 是人机界面的主要组成部分。 KWS 的目标是在低误报 (FA) 率下最大化检测精 度,同时最小化占用空间大小、延迟和复杂性。为 了实现这些目标,我们研究了卷积循环神经网络 (CRN
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 关键词识别 (KWS) 是人机界面的主要组成部分。 KWS 的目标是在低误报 (FA) 率下最大化检测精 度,同时最小化占用空间大小、延迟和复杂性。为 了实现这些目标,我们研究了卷积循环神经网络 (CRN
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 声音事件的分类精度与特征提取有很强的关系。本文将深度特征用于环境声音分类(ESC)问题。深层特征是通过使用新开发的卷积神经网络(CNN)模型的全连接层来提取的,该模型通过频谱图图像以端到端的方式进行训练。
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 声音事件的分类精度与特征提取有很强的关系。本文将深度特征用于环境声音分类(ESC)问题。深层特征是通过使用新开发的卷积神经网络(CNN)模型的全连接层来提取的,该模型通过频谱图图像以端到端的方式进行训练。
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 在过去的几年里,大规模数据集(例如 AudioSet)上的音频分类任务一直是一个重要的研究领域。一些更深层次的基于卷积的神经网络已经显示出引人注目的性能,特别是 Vggish、YAMNet 和预训练音频神
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 在过去的几年里,大规模数据集(例如 AudioSet)上的音频分类任务一直是一个重要的研究领域。一些更深层次的基于卷积的神经网络已经显示出引人注目的性能,特别是 Vggish、YAMNet 和预训练音频神
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 婴儿哭闹识别是一项具有挑战性的任务,因为很难确定能够让研究人员清楚区分不同类型哭闹的语音特征。然而,婴儿哭闹被视为一种不同的言语交流方式。利用适当的人工智能模型,利用梅尔倒谱系数(MFCC)可以区分婴儿哭
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 婴儿哭闹识别是一项具有挑战性的任务,因为很难确定能够让研究人员清楚区分不同类型哭闹的语音特征。然而,婴儿哭闹被视为一种不同的言语交流方式。利用适当的人工智能模型,利用梅尔倒谱系数(MFCC)可以区分婴儿哭
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 咳嗽检测是一种很有前途的检测呼吸道疾病各种病理严重程度的技术。自动咳嗽检测系统的开发将成为早期诊断的最佳跟踪工具。长期以患者为中心的远程咳嗽严重程度监测将改变医疗基础设施的游戏规则,因为在过去几十年中,远
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 咳嗽检测是一种很有前途的检测呼吸道疾病各种病理严重程度的技术。自动咳嗽检测系统的开发将成为早期诊断的最佳跟踪工具。长期以患者为中心的远程咳嗽严重程度监测将改变医疗基础设施的游戏规则,因为在过去几十年中,远
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环神经网络来降 噪心电图信号 (ECG) 的新方法。该网络使 用动态模型 ECG 生成的合成数据进行预训 练,并使用来自 Physionet
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环神经网络来降 噪心电图信号 (ECG) 的新方法。该网络使 用动态模型 ECG 生成的合成数据进行预训 练,并使用来自 Physionet
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 打鼾是一种普遍的症状,严重影响睡眠呼吸障碍患者(单纯打鼾者)、阻塞性睡眠呼吸暂停(OSA)患者及其床伴的生活质量。研究表明,打鼾可用于OSA的筛查和诊断。因此,从夜间睡眠呼吸音频中准确检测打鼾声一直是最重
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 打鼾是一种普遍的症状,严重影响睡眠呼吸障碍患者(单纯打鼾者)、阻塞性睡眠呼吸暂停(OSA)患者及其床伴的生活质量。研究表明,打鼾可用于OSA的筛查和诊断。因此,从夜间睡眠呼吸音频中准确检测打鼾声一直是最重
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 胎心率(FHR)对于评估胎儿的健康状况具 有重要意义。然而,基于传统的分类标准并不准确。 随着计算机信息技术的飞速发展,计算机技术对于胎 儿电子监护(EFM)中的胎心率分析至关重要。胎心率 分为正常、可疑
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 胎心率(FHR)对于评估胎儿的健康状况具 有重要意义。然而,基于传统的分类标准并不准确。 随着计算机信息技术的飞速发展,计算机技术对于胎 儿电子监护(EFM)中的胎心率分析至关重要。胎心率 分为正常、可疑
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 准确的人类活动识别(HAR)是实现新兴的上下文感知应用程序的关键,这些应用程序需要了解和识别人类行为,例如监测独居的残疾人或老年人。传统上,HAR是通过环境传感器(例如,相机)或通过可穿戴设备(例如,具有
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 准确的人类活动识别(HAR)是实现新兴的上下文感知应用程序的关键,这些应用程序需要了解和识别人类行为,例如监测独居的残疾人或老年人。传统上,HAR是通过环境传感器(例如,相机)或通过可穿戴设备(例如,具有
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 据世界心脏联合会统计,截至 2022 年,全球有 13 亿人被诊断患有高血压,每年约有 1000 万人死于高血压。一个人有必要拥有有益于心脏健康的生活方式,以防止被诊断出患有心血管疾病(CVD)和动脉疾病
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 据世界心脏联合会统计,截至 2022 年,全球有 13 亿人被诊断患有高血压,每年约有 1000 万人死于高血压。一个人有必要拥有有益于心脏健康的生活方式,以防止被诊断出患有心血管疾病(CVD)和动脉疾病
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 心血管疾病是最严重的死亡原因之一,每年在全世界造成严重的生命损失。持续监测血压似乎是最可行的选择,但这需要一个侵入性的过程,带来了几层复杂性。这促使我们开发一种方法,通过使用光体积描记图(PPG)
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 心血管疾病是最严重的死亡原因之一,每年在全世界造成严重的生命损失。持续监测血压似乎是最可行的选择,但这需要一个侵入性的过程,带来了几层复杂性。这促使我们开发一种方法,通过使用光体积描记图(PPG)
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个
阅读全文
摘要:
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 卷积神经网络(CNN)通过从原始数据中自动学习层次特征表示,在图像识别任务中取得了巨大成功。虽然大多数时间序列分类(TSC)文献都集中在1D信号上,但本文使用递归图(RP)将时间序列转换为2D纹理
阅读全文
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 卷积神经网络(CNN)通过从原始数据中自动学习层次特征表示,在图像识别任务中取得了巨大成功。虽然大多数时间序列分类(TSC)文献都集中在1D信号上,但本文使用递归图(RP)将时间序列转换为2D纹理
阅读全文
摘要:具体的软硬件实现点击http://mcu-ai.com/MCU-AI技术网页_MCU-AI人工智能 心音分类在心血管疾病的早期发现中起着至关重要的作用,特别是对于小型初级卫生保健诊所。尽管近年来心音分类取得了很大进展,但其中大多数都是基于传统的分段特征和基于浅层结构的分类器。这些传统的声学表示和分类
阅读全文
摘要:具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 光电体积描记法(PPG)是一种经济有效的非侵入性技术,利用光学方法测量心脏生理学。 PPG 在健康监测领域越来越受欢迎,并用于各种商业和临床可穿戴设备。与心电图(ECG)相比,PPG 并没有提供实
阅读全文
摘要:具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 血压监测是监测人们健康状况的途径之一。早期发现血压异常可以帮助患者得到早期治疗并降低与心血管疾病相关的死亡率。因此,有一种机制来实时监测患者的血压变化是非常有价值的。在本文中,我们提出了使用心电图
阅读全文
摘要:具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 此示例说明如何使用连续小波变换 (CWT) 和深度卷积神经网络 (CNN) 对人体心电图 (ECG) 信号进行分类。 从头开始训练深度 CNN 的计算成本很高,并且需要大量的训练数据。在很多应用中
阅读全文
摘要:开源的、低成本、低功耗微处理器神经网络模型解决方案
阅读全文

浙公网安备 33010602011771号