IPv6:穷极想象力

从IPv4谈起

IP
地址与子网掩码

IP地址与网络分类

(1)IP地址

不同的物理网络技术有不同的编址方式;不同物理网络中的主机,有不同的物理网络地址。网间网技术是将不同物理网络技术统一起来的高层软件技术。网间网技术采用一种全局通用的地址格式,为全网的每一网络和每一主机都分配一个网间网地址,以此屏蔽物理网络地址的差异。IP协议提供一种全网间网通用的地址格式,并在统一管理下进行地址分配,保证一个地址对应一台网间网主机(包括网关),这样物理地址的差异被IP层所屏蔽。IP层所用到的地址叫做网间网地址,又叫IP地址。它由网络号和主机号两部分组成,统一网络内的所有主机使用相同的网络号,主机号是唯一的。IP地址是一个32为的二进制数,分成4个字段,每个字段8位。

(2)三类主要的网络地址
  我们知道,从LAN到WAN,不同种类网络规模相差很大,必须区别对待。因此按网络规模大小,将网络地址分为主要的三类,如下:
  A类:
  0 1 2 3 8 16 24
  3 1 0网络号主机号
B类:
  1 0网络号主机号
  C类:
  1 1 0网络号主机号
  A类地址用于少量的(最多27个)主机数大于216的大型网,每个A类网络可容纳最多224台主机;B类地址用于主机数介于28~216之间数量不多不少的中型网,B类网络最多214个;C类地址用于每个网络只能容纳28台主机的大量小型网,C类网络最多221个。
  除了以上A、B、C三个主类地址外,还有另外两类地址,如下:
  D类:
  1 1 1 0多目地址
  E类:
  1 1 1 1 0留待后用
  其中多目地址(multicast address)是比广播地址稍弱的多点传送地址,用于支持多目传输技术。E类地址用于将来的扩展之用。
  
(3)TCP/IP规定网络地址
  除了一般地标识一台主机外,还有几种具有特殊意义的特殊形式。
  *广播地址
  TCP/IP规定,主机号全为“1”的网络地址用于广播之用,叫做广播地址。所谓广播,指同时向网上所有主机发送报文。
  *有限广播
  前面提到的广播地址包含一个有效的网络号和主机号,技术上称为直接广播(directed boradcasting)地址。在网间网上的任何一点均可向其他任何网络进行直接广播,但直接广播有一个缺点,就是要知道信宿网络的网络号。
  有时需要在本网络内部广播,但又不知道本网络网络号。TCP/IP规定,32比特全为“1”的网间网地址用于本网广播,该地址叫做有限广播地址(limited broadcast address)。
  *“0”地址
  TCP/IP协议规定,各位全为“0”的网络号被解释成“本”网络。
  *回送地址
  A类网络地址127是一个保留地址,用于网络软件测试以及本地机进程间通信,叫做回送地址(loopback address)。无论什么程序,一旦使用回送地址发送数据,协议软件立即返回之,不进行任何网络传输。
  TCP/IP协议规定,一、含网络号127的分组不能出现在任何网络上;二、主机和网关不能为该地址广播任何寻径信息。由以上规定可以看出,主机号全“0”全“1”的地址在TCP/IP协议中有特殊含义,不能用作一台主机的有效地址。

二、子网掩码

  (1)子网TCP/IP网间网技术产生于大型主流机环境中,它能发展到今天的规模是当初的设计者们始料未及的。网间网规模的迅速扩展对IP地址模式的威胁并不是它不能保证主机地址的唯一性,而是会带来两方面的负担:第一,巨大的网络地址管理开销;第二,网关寻径急剧膨胀。其中第二点尤为突出,寻径表的膨胀不仅会降低网关寻径效率(甚至可能使寻径表溢出,从而造成寻径故障),更重要的是将增加内外部路径刷新时的开销,从而加重网络负担。
  因此,迫切需要寻求新的技术,以应付网间网规模增长带来的问题。仔细分析发现,网间网规模的增长在内部主要表现为网络地址的增减,因此解决问题的思路集中在:如何减少网络地址。于是IP网络地址的多重复用技术应运而生。
  通过复用技术,使若干物理网络共享同一IP网络地址,无疑将减少网络地址数。
  子网编址(subnet addressing)技术,又叫子网寻径(subnetrouting),英文简称subnetting,是最广泛使用的IP网络地址复用方式,目前已经标准化,并成为IP地址模式的一部分。
  一般的,32位的IP地址分为两部分,即网络号和主机号,我们分别把他们叫做IP地址的“网间网部分”和“本地部分”。子网编址技术将本地部分进一步划分为“物理网络”部分和“主机”部分,如图:
  网间网部分物理网络主机
  |←网间网部分→|←────本地部分─────→|
  其中“物理网络”用于标识同一IP网络地址下的不同物理网络,既是“子网”。

  (2)子网掩码IP协议标准规定:每一个使用子网的网点都选择一个32位的位模式,若位模式中的某位置1,则对应IP地址中的某位为网络地址(包括网间网部分和物理网络号)中的一位;若位模式中的某位置0,则对应IP地址中的某位为主机地址中的一位。例如位模式:
  11111111 11111111 11111111 00000000中,前三个字节全1,代表对应IP地址中最高的三个字节为网络地址;后一个字节全0,代表对应IP地址中最后的一个字节为主机地址。这种位模式叫做子网模(subnet mask)或“子网掩码”。
  为了使用的方便,常常使用“点分整数表示法”来表示一个IP地址和子网掩码,例如B类地址子网掩码(11111111 11111111 11111111 00000000)为:
  255.255.25.0 IP协议关于子网掩码的定义提供一种有趣的灵活性,允许子网掩码中的“0”和“1”位不连续。但是,这样的子网掩码给分配主机地址和理解寻径表都带来一定困难,并且,极少的路由器支持在子网中使用低序或无序的位,因此在实际应用中通常各网点采用连续方式的子网掩码。像255.255.255.64和255.255.255.160等一类的子网掩码不推荐使用。
  (3)子网掩码与IP地址子网掩码与IP地址结合使用,可以区分出一个网络地址的网络号和主机号。
  例如:有一个C类地址为:
  192.9.200.13其缺省的子网掩码为:
  255.255.255.0则它的网络号和主机号可按如下方法得到:
①将IP地址192.9.200.13转换为二进制11000000 00001001 11001000 00001101
②将子网掩码255.255.255.0转换为二进制11111111 11111111 11111111 00000000
③将两个二进制数逻辑与(AND)运算后得出的结果即为网络部分11000000 00001001 11001000 00001101 AND 11111111 11111111 11111111 00000000 11000000 00001001 11001000 00000000结果为192.9.200.0,即网络号为192.9.200.0。
④将子网掩码取反再与IP地址逻辑与(AND)后得到的结果即为主机部分11000000 00001001 11001000 00001101 AND 00000000 00000000 00000000 11111111 00000000 00000000 00000000 00001101结果为0.0.0.13,即主机号为13。  
  (4)子网掩码与IP地址子网掩码与IP地址结合使用,可以区分出一个网络地址的网络号和主机号。
  例如:有一个C类地址为:
  192.9.200.13 其缺省的子网掩码为:
  255.255.255.0 则它的网络号和主机号可按如下方法得到:
①将IP地址192.9.200.13转换为二进制11000000 00001001 11001000 00001101
②将子网掩码255.255.255.0转换为二进制11111111 11111111 11111111 00000000
③将两个二进制数逻辑与(AND)运算后得出的结果即为网络部分11000000 00001001 11001000 00001101 AND 11111111 11111111 11111111 00000000 11000000 00001001 11001000 00000000结果为192.9.200.0,
即网络号为192.9.200.0。
④将子网掩码取反再与IP地址逻辑与(AND)后得到的结果即为主机部分11000000 00001001 11001000 00001101 AND 00000000 00000000 00000000 11111111 00000000 00000000 00000000 00001101 结果为0.0.0.13,即主机号为13。
  三、子网划分与实例根据以上分析,建议按以下步骤和实例定义子网掩码。
  1、将要划分的子网数目转换为2的m次方。如要分8个子网,8=23。
  2、取上述要划分子网数的2的m次方的幂。如23,即m=3。
  3、将上一步确定的幂m按高序占用主机地址m位后转换为十进制。如m为3 则是11100000,转换为十进制为224,即为最终确定的子网掩码。如果是C类网,则子网掩码为255.255.255.224;如果是B类网,则子网掩码为255.255.224.0;如果是C类网,则子网掩码为255.224.0.0。
  在这里,子网个数与占用主机地址位数有如下等式成立:2m=n。其中,m表示占用主机地址的位数;n表示划分的子网个数。根据这些原则,将一个C类网络分成4个子网。若我们用的网络号为192.9.200,则该C类网内的主机IP地址就是192.9.200.1~192.9.200.254(因为全“0”和全“1”的主机地址有特殊含义,不作为有效的IP地址),现将网络划分为4个部分,按照以上步骤:
  4=22,取22的幂,即2,则二进制为11,占用主机地址的高序位即为11000000,转换为十进制为192。这样就可确定该子网掩码为:192.9.200.192,4个子网的IP地址范围分别为:
  二进制十进制
① 11000000 00001001 11001000 00000001 11000000 00001001 11001000 00111110 192.9.200.1
192.9.200.62
② 11000000 00001001 11001000 01000001 11000000 00001001 11001000 01111110 192.9.200.65
192.9.200.126
③ 11000000 00001001 11001000 10000001 11000000 00001001 11001000 10111110 192.9.200.129
192.9.200.190
④ 11000000 00001001 11001000 11000001 11000000 00001001 11001000 11111110 192.9.200.193
192.9.200.254
  在此列出A、B、C三类网络子网数目与子网掩码的转换表,以供参考。

A类:

子网数目 占用位数    子网掩码    子网中主机数
 2     1    255.128.0.0    8,388,606
 4     2    255.192.0.0    4,194,302
 8     3    255.224.0.0    2,097,150
 16     4    255.240.0.0    1,048,574
 32     5    255.248.0.0    524,286
 64     6    255.252.0.0    262,142
 128    7    255.254.0.0    131,070
 128    8    255.255.0.0    65,534

B类:

子网数目 占用位数    子网掩码    子网中主机数
 2     1    255.255.128.0   32,766
 4     2    255.255.192.0   16,382
 8     3    255.255.224.0   8,190
 16     4    255.255.240.0   4,094
 32     5    255.255.248.0   2,046
 64     6    255.255.252.0   1,022
 128    7    255.255.254.0   510
 256    8    255.255.255.0   254

C类:

子网数目 占用位数    子网掩码    子网中主机数
 2     1    255.255.255.128   126
 4     2    255.255.255.192   62
 8     3    255.255.255.224   30
 16     4    255.255.255.240   14
 32     5    255.255.255.248   6
 64     6    255.255.255.252   2

 

 

为了给不同规模的网络提供必要的灵活性,IP地址的设计者将IP地址空间划分为五个不同的地址类别,如下表所示,其中A,B,C三类最为常用:

IP地址
类型

第一字节
十进制范围

二进制
固定最高位

二进制
网络位

二进制
主机位

A

0127

0

8

24

B

128191

10

16

16

C

192223

110

24

8

D

224239

1110

组播地址

E

240255

1111

保留试验使用

  网络号由因特网权力机构分配,目的是为了保证网络地址的全球唯一性。主机地址由各个网络的管理员统一分配。因此,网络地址的唯一性与网络内主机地址的唯一性确保了IP地址的全球唯一性。

  二、划分子网

  为了提高IP地址的使用效率,可将一个网络划分为子网:采用借位的方式,从主机位最高位开始借位变为新的子网位,所剩余的部分则仍为主机位。这使得IP地址的结构分为三部分:网络位、子网位和主机位。

 

  引入子网概念后,网络位加上子网位才能全局唯一地标识一个网络。把所有的网络位用1来标识,主机位用0来标识,就得到了子网掩码。如下图所示的子网掩码转换为十进制之后为:255.255.255.224

  子网编址使得IP地址具有一定的内部层次结构,这种层次结构便于IP地址分配和管理。

  它的使用关键在于选择合适的层次结构--如何既能适应各种现实的物理网络规模,又能充分地利用IP地址空间(即:从何处分隔子网号和主机号)。

 

 

 

                                   Ipv6

互联网用户迅猛增多,提供地址的IPv4已经暴露出不足,为此IPv6应运而生。那么,它解决了什么问题?其潜力有多大?还有哪些问题要解决?

  IP地址面临枯竭

  IP协议IPv4产生于1974年,它提供了32位的IP地址。随着互联网强劲的发展势头,IPv4已经难以满足需要,它面临着以下三个主要问题:

  1.地址资源行将枯竭:IPv4提供的IP地址位数是32位,也即1亿个左右的地址。实际使用中,还要去除网络地址、广播地址、划分子网的开销、路由器地址、保留地址等等,最后有效的地址数目比可用的地址总数还要低。随着连接到Internet上的主机数目的迅速增加,有预测表明,所有IPv4地址将在20052010年间分配完毕。

  2.路由表越来越大:由于IPv4采用与网络拓扑结构无关的形式来分配地址,所以随着连入网络数目增加,路由器数目飞速增加,相应地,决定数据传输路由的路由表也就不断加大。庞大的路由表不仅增加了路由器的工作量,而且降低了Internet服务的稳定性。

  3.地址分配不便:IPv4是采用手工配置的方法来给用户分配地址,这不仅增加了管理费用,而且无法为那些需要IP移动性的用户提供更好服务。

  IPv6:穷极想象力

  与IPV4相比较,IPV6较好的解决了上面提到的众多问题。具体如下:

  1.IPv6将现有的IP地址长度扩大到128位。使地址数量大大增加。形象地说,对于地球的每平方米都将有超过1000IPv6。这将极大地满足那些伴随着网络智能设备的出现而对地址增长的需求,例如个人数据助理(PDA)、移动电话(Mobile Phone)、家庭网络接入设备(HAN)等。

  2.主机自动配置IP地址和网络参数。IPv6继承了IPv4DHCP自动配置服务。主机从DHCP服务器租借IP地址并获得有关的配置信息(如缺省网关、DNS服务器等),由此达到自动设置主机IP地址的目的。

  3.IPv6提供更好的服务质量(QoS)IPv6除了可以有效的解决互联网网络地址的危机外,而且在提升互联网网络性能方面有了很大的提高。在IPv6中提供了对QoS的支持。在IPv6分组的头部中定义了两个重要参数:业务类别字段和流标示字段。业务类别字段将IP分组的优先级分为16个等级。对于那些需要特殊QoS的业务,可在IP数据包中设置相应的优先级,路由器根据IP包的优先级来分别对这些数据进行不同的处理。数据流标志位用于定义任意一个传输的数据流,以便网络中所有的节点能对这一数据进行识别,并作特殊的处理。

  4.为了加强Internet的安全性,防止诸如企业或机构网络遭到攻击、机密数据被窃取等不幸事件的发生。Ipv6中包含了一套用于保护IP通信的IP安全协议(IPSec)。IPSecIPv6的一个组成部分,也是IPv4的一个可选扩展协议。IPv6对安全机制的增强可以简化安全虚拟专用网(VPN)的实现。

  5.IPv6支持组播功能,组播是一种可将信息传递给所有已登记了欲接收该消息的主机的功能,此功能可同时传递数据给大量的用户,传递过程只会占有一些公共或专用带宽开销而不会浪费带宽在整个网络里广播。IPv6还包含了一些限制组播消息传递范围的一些特性,这样,组播消息可以被局限在一个特定的位置,区域,公司或其它约定范围,从而减少了带宽的使用并可提供安全性。   6.利用必选的RSVP功能,用户可在沿源点到目的地的路由器上预留带宽,这使得提供具有服务质量的图像和其它实时业务成为可能。

  7.IPv6将支持包长可达四兆字节的分组,这将使得大分组的传送更容易,并可确保IPv6能够在任意的传输媒体上达到对可用带宽的最隹利用。

  IPv6商机何在

  自从1995IPv6的主要规格被确定以后,IPv6便成为事实上下一代IP协议的规范。19962月美国新罕布什尔大学的IOL(相互操作性实验室)第一个将IPv6用于通信软件并进行了相互连接实验。1997年,以验证IPv6为主要目的的实验网络6bone发展为连接29个国家的大规模网络。IPv6作为新一代的网络互联协议,其先进性和灵活性正在得到越来越多人的认可。

  我们确信IPv6将会用来连接比计算机和网络更多的东西,IPv6将使得像掌上型个人数据助理(PDA)、嵌入了网络元件的移动电话、商务通等许多其它设备接入网络成为可能,它也能使从家里的电钣锅到高尔夫球场上的洒水车这样广泛的设备和装置接入网络。

  IPv6的普及将标志着网络时代的彻底到来。在不远的将来,当汽车由于交通堵塞而停在路途中时,我们将能够利用车载计算机通过口述来修改日程安排以便让家人和同事知道我们被堵在哪儿了,还可以控制打开里的暖气和电灯,同时在这辆车上还可以运行诊断程序和下载结果,这样当我们到达指定的商店时,我们需要的东西早已准备好了。事实上,无论在家里、在办公室还是在娱乐场所,我们曾使用的交互设备都可接入到因特网上,商机无限且前景惊人,IPv6将使所有的这些成为可能。

  转换到IPv6还要解决什么

  IPv6协议与IPv4协议不兼容的事实是其走向市场的一个难点。目前IETF正在确定两种方法来完成这种转换处理:隧道技术和双协议栈技术。

  隧道技术是一种选择,两个IPv6的站点可以在IPv4骨干网上通过隧道通信(或反之),但它无法让一个IPv4站点与另一个IPv6站点通信。而如果一个站点具有IPv4/IPv6的双协议栈,它就即可以与IPv4站点通信也可以与IPv6站点通信。但是这样做显然需要巨大的投资,特别是对于规模较大的网络,不同供应商的产品协议栈的互通协调也是有必要的,同时,上层协议也可能需要替换。

  虽然IPv6设计的基本目标是易于从IPv4转换到IPv6和能于IPv4共存,但把今天数十亿台基于IPv4的系统转换到IPv6上将面临巨大挑战。但是,Ipv6内置的兼容性特点将使得这种努力会容易一些,并且像IPv6上的分组隧道和IPv4上的分组隧道技术,以及协议翻译网关都将使得这项工作较为容易。

  许多机构组织都正在开发IPv6驱动软件,一些网络供应商也宣布了他们对IPV在网络应用和通信软件产品中的广泛支持。

  对协议系统的修改可能会给现有的应用带来很大的影响,因此必须小心谨慎地实施以使风险最小,因此,在现有的应用中把IPv4转换到IPv6或在一个新的应用中实现IPv6,都需要相当的专业技术从而确保协议的平滑转换和准确无误地实现。可以采取逐步升级和最小限度升级等方法逐渐逐步,以减少风险。

  因此IPv6正在发展许多网络厂商也正在组织力量开发IPv4转换到IPv6的产品,无论如何,IPv4终将被IPv6所替代,这是历史发展的必然规律。

posted on 2007-01-18 23:36  虞山居士  阅读(202)  评论(0)    收藏  举报