AtCoder Beginner Contest 419


A - AtCoder Language

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
	std::string s;
	std::cin >> s;
	if (s == "red") {
		std::cout << "SSS\n";
	} else if (s == "blue") {
		std::cout << "FFF\n";
	} else if (s == "green") {
		std::cout << "MMM \n"; 
	} else {
		std::cout << "Unknown\n";
	}
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}

B - Get Min

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
	int n;
	std::cin >> n;
	std::multiset<int> s;
	while (n -- ) {
		int op;
		std::cin >> op;
		if (op == 1) {
			int x;
			std::cin >> x;
			s.insert(x);
		} else {
			std::cout << *s.begin() << "\n";
			s.erase(s.begin());
		}
	}
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}

C - King's Summit

题意:平面上\(n\)个人,每个人一步可以走到相邻的八个格子上也可以不走。求所有人走到同一个格子的最小步数。

容易看出两个格子的距离是\(\max(|x_i - x_j|, |y_i - y_j|)\)
那么求出最大和最小的\(x\)\(y\),则距离最远的两个人距离为\(\max(max_x -min_x, max_y - min_y)\)。两个人可以双向奔赴,所有答案除二向上取整。

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
	int n;
	std::cin >> n;
	int minx = 2e9, maxx = -2e9, miny = 2e9, maxy = -2e9;
	for (int i = 0; i < n; ++ i) {
		int x, y;
		std::cin >> x >> y;
		minx = std::min(minx, x);
		miny = std::min(miny, y);
		maxx = std::max(maxx, x);
		maxy = std::max(maxy, y);
	}

	std::cout << (std::max(maxx - minx, maxy - miny) + 1) / 2 << "\n";
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}

D - Substr Swap

题意:两个字符串\(s, t\),每次交换它们的\([l_i, r_i]\)这一部分。求最后的\(s\)

注意到\(s_i\)只会和\(t_i\)交换,且交换偶数次又会换回来。那么可以差分。

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
	int n, m;
	std::cin >> n >> m;
	std::string s, t;
	std::cin >> s >> t;
	std::vector<int> d(n + 2);
	for (int i = 0; i < m; ++ i) {
		int l, r;
		std::cin >> l >> r;
		d[l] += 1;
		d[r + 1] -= 1;
	}

	for (int i = 1; i <= n; ++ i) {
		d[i] += d[i - 1];
		if (d[i] & 1) {
			std::swap(s[i - 1], t[i - 1]);
		}
	}
	std::cout << s << "\n";
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}

E - Subarray Sum Divisibility

题意:长度为\(n\)的数字,你每次可以让一个数加一。要使得每个长度为\(L\)的子数组的和都是\(m\)的倍数。求最小操作数。

\(a_i, a_{i+L}, a_{i+2L}, ...\)\(m\)取模后相同。因为\([i, i + L - 1]\)这一部分是\(m\)的倍数,\([i + 1, i + L]\)也是,也就是两个部分模\(m\)都是\(0\),则\(a_i + a_{i+1} + ... + a_{i+L-1} \equiv a_{i+1} + ... + a_{i+L-1} + a_{i+L} \pmod{m}\),得到\(a_i \equiv a_{i+L} \pmod{m}\).
那么可以求出\(w[i][k]\)表示下标模\(L\)等于\(i\)的所有位置模\(m\)都等于\(k\)的花费。然后我们只需要确定前\(L\)个数的值就确定了整个数组,那么记\(f[i][j]\)为前\(i\)个数总和模\(m\)\(j\)时的最小操作数,那么有\(f[i][(j + k) \% m] = \min(f[i - 1][(j + k) \% m], f[i - 1][j] + w[i][k])\)。这是一个背包。

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
	int n, m, L;
	std::cin >> n >> m >> L;
	std::vector<int> a(n);
	for (int i = 0; i < n; ++ i) {
		std::cin >> a[i];
	}

	std::vector w(L, std::vector<int>(m));
	for (int i = 0; i < L; ++ i) {
		for (int j = i; j < n; j += L) {
			for (int k = 0; k < m; ++ k) {
				w[i][(a[j] + k) % m] += k;
			}
		}
	}

	const int inf = 1e9;
	std::vector<int> f(m, inf);
	f[0] = 0;
	for (int i = 0; i < L; ++ i) {
		std::vector<int> g(m, inf);
		for (int j = 0; j < m; ++ j) {
			for (int k = 0; k < m; ++ k) {
				g[(j + k) % m] = std::min(g[(j + k) % m], f[j] + w[i][k]);
			}
		}
		f = g;
	}

	std::cout << f[0] << "\n";
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}

F - All Included

题意:有\(n\)个字符串,求有多少长度为\(L\)的字符串使得这\(n\)个字符串都作为子串出现过。

状压\(dp\)\(ac\)自动机。
\(f[i][j][k]\)表示长度为\(i\)的字符串包含这\(n\)个字符串的状态二进制表示为\(j\)时,匹配到了\(ac\)自动机上的第\(k\)个节点的方案数。\(ac\)自动机里提前记录每个节点\(fail\)链上可以包含多少个字符串,枚举下一个字符转移即可。

点击查看代码
#include <bits/stdc++.h>

using i64 = long long;

template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
    
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 998244353;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 998244353;
using Z = MInt<P>;

constexpr int SIZE = 26;
constexpr int N = 100;

int tr[N][SIZE], len[N], end[N], next[N];
int idx;
struct ACAM {
	ACAM() {
		init();
	}

	int newNode() {
		memset(tr[idx], 0, sizeof tr[idx]);
		end[idx] = 0;
		next[idx] = 0;
		len[idx] = 0;
		return idx ++ ;
	}

	void init() {
		idx = 0;
		newNode();
	}

	int insert(const std::string & s, int id) {
		int p = 0;
		for (auto & c : s) {
			int x = c - 'a';
			if (!tr[p][x]) {
				tr[p][x] = newNode();
				len[tr[p][x]] = len[p] + 1;
			}

			p = tr[p][x];
		}

		end[p] |= 1 << id;
		return p;
	}

	void build() {
		std::queue<int> q;
		for (int i = 0; i < SIZE; ++ i) {
			if (tr[0][i]) {
				q.push(tr[0][i]);
			}
		}

		while (q.size()) {
			int u = q.front(); q.pop();
			for (int i = 0; i < SIZE; ++ i) {
				int v = tr[u][i];
				if (!v) {
					tr[u][i] = tr[next[u]][i];
				} else {
					next[v] = tr[next[u]][i];
					q.push(v);
				}
			}
			end[u] |= end[next[u]];
		}
	}
};

void solve() {
	int n, L;
	std::cin >> n >> L;
	ACAM ac;
	for (int i = 0; i < n; ++ i) {
		std::string s;
		std::cin >> s;
		ac.insert(s, i);
	}

	ac.build();
	int m = idx;
	std::vector f(1 << n, std::vector<Z>(m));
	f[0][0] = 1;
	for (int i = 0; i < L; ++ i) {
		std::vector g(1 << n, std::vector<Z>(m));
		for (int s = 0; s < 1 << n; ++ s) {
			for (int j = 0; j < m; ++ j) {
                if (f[s][j] == 0) {
                    continue;
                }
				for (int c = 0; c < 26; ++ c) {
					int nj = tr[j][c];
					int ns = s | end[nj];
					g[ns][nj] += f[s][j];
				}
			}
		}

		f = g;
	}

	Z ans = 0;
	for (int i = 0; i < m; ++ i) {
		ans += f[(1 << n) - 1][i];
	}
	std::cout << ans << "\n";
}

int main() {
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	int t = 1;
	// std::cin >> t;
	while (t -- ) {
		solve();
	}
	return 0;
}
posted @ 2025-08-16 21:40  maburb  阅读(273)  评论(0)    收藏  举报