POJ 2299 Ultra-QuickSort
Ultra-QuickSort
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 32626 | Accepted: 11642 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
给一组数,求这组数的逆序数
开始直接用了线性代数里讲的方法,自己估算了一下O(n^2),感觉要跪,试着交了一下,果然跪了
百度后发现此题可以用归并排序做,每次merge的时候,当从后半部分取数时,就把当前前半部分剩余数的个数加到ans中去
这题给我最大的启示就是,每个排序算法都有其奇妙的用处,不能只会快排
1 #include<iostream> 2 3 using namespace std; 4 5 long long ans; 6 long a[500000],b[500000]; 7 8 void Merge(long low,long mid,long high) 9 { 10 long i=low,j=mid+1,k=low,end_1=mid,end_2=high; 11 while(i<=end_1&&j<=end_2) 12 { 13 b[k++]=(a[i]<=a[j]?a[i++]:(ans+=mid-i+1,a[j++])); 14 } 15 while(i<=end_1) 16 b[k++]=a[i++]; 17 while(j<=end_2) 18 b[k++]=a[j++]; 19 for(i=low;i<=high;i++) 20 a[i]=b[i]; 21 } 22 23 void Sort(long p,long q) 24 { 25 if(p==q) 26 return; 27 long mid=(p+q)/2; 28 Sort(p,mid); 29 Sort(mid+1,q); 30 Merge(p,mid,q); 31 } 32 33 int main() 34 { 35 long n; 36 37 while((cin>>n)&&n) 38 { 39 for(int i=0;i<n;i++) 40 cin>>a[i]; 41 ans=0; 42 Sort(0,n-1); 43 cout<<ans<<endl; 44 } 45 46 return 0; 47 }

浙公网安备 33010602011771号