随笔分类 - 机器学习
LightGBM
摘要:1.简介 lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机 LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 更快的训练效率 低内
阅读全文
保存训练好的模型并调用
摘要:当我们训练好一个model后,下次如果还想用这个model,我们就需要把这个model保存下来,下次直接导入就好了,不然每次都跑一遍,训练时间短还好,要是一次跑好几天的那怕是要天荒地老了。 scikit-learn已经有了模型持久化的操作,导入joblib即可。 保存至本地: 从本地调回:
阅读全文
利用Surprise包进行电影推荐
摘要:Surprise(Simple Python Recommendation System Engine)是一款推荐系统库,是scikit系列中的一个。简单易用,同时支持多种推荐算法(基础算法、协同过滤、矩阵分解等)。 设计surprise时考虑到以下目的: 让用户完美控制他们的实验。为此,特别强调
阅读全文
随机森林(Random Forest)
摘要:1.什么是随机森林 简述 随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险。 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失。也可用来预测疾病的风险和病患者的易感性。 随机森林是一个可做能够回归和分类。 它具备处理大数据的特性,而且它有助于估计或变量是非常
阅读全文