文章分类 - 自然语言处理
摘要:条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔科夫模型)难以避免的标记偏置问题。条件随机场理论(CRFs)可以用于序列标记、数据分割、组块分析等自然语言处理任务中。在中文分词、中文人名识别、歧义消解等汉语自然语言处理任务中都有应用,表现很好。目前基于 CRFs 的主要系统实现有 CRF,FlexCRF,CRF++缺点:训练代价大、复杂度高预备知
阅读全文