PSO 算法的变体python实现
上演化计算课的时候老师让我们实现EOPSO算法(一种精英反向的粒子群优化算法),下面是他的算法步骤:


首先我们需要知道一些基础知识:
(1)基础PSO算法

(2)精英反向解

import numpy as np
import random
import math
class Population:
def __init__(self,min_range_x,max_range_x,min_range_v,max_range_v,w,c1,c2,r1,r2,size,dim,rounds,f,CR,k,object_func):
self.min_range_x = min_range_x
self.max_range_x = max_range_x
self.min_range_v = min_range_v
self.max_range_v = max_range_v
self.w = w
self.c1 = c1
self.c2 = c2
self.r1 = r1
self.r2 = r2
self.size = size
self.dimension = dim
self.rounds = rounds
self.f = f
self.CR = CR
self.k = k
self.get_object_function_value = object_func
self.cur_round = 0
#初始化粒子位置和速度,gbest,pbest,精英反向解
self.X = np.array([np.array([random.uniform(self.min_range_x, self.max_range_x) for s in range(self.dimension)])
for tmp in range(size)])
self.V = np.array([np.array([random.uniform(self.min_range_v, self.max_range_v) for s in range(self.dimension)])
for tmp in range(size)])
self.object_function_values = [self.get_object_function_value(v) for v in self.X]
self.pbest = self.X.copy()
self.gbest = self.X[np.argmin(self.object_function_values)]
# self.opx = [np.array([self.k * (self.X[:,s].min() + self.X[:,s].max) - self.X[tmp][s] for s in range(self.dimension)])
# for tmp in range(size)]
self.opx = np.zeros_like(self.X)
self.m = np.zeros_like(self.gbest)
#生成反向精英向量
def make_op(self):
for i in range(self.size):
for j in range(self.dimension):
da=self.X[:,j].min()
db=self.X[:,j].max()
self.opx[i][j] = self.k*(da+db) - self.X[i][j]
if self.opx[i][j] < self.min_range_x or self.opx[i][j] > self.max_range_x:
self.opx[i][j] = random.uniform(self.min_range_x, self.max_range_x)
#选择
def select(self):
for i in range(self.size):
x1 = self.X[i]
x2 = self.opx[i]
if self.get_object_function_value(x1) >= self.get_object_function_value(x2):
self.pbest[i] = x2
else:
self.pbest[i] = x1
if self.get_object_function_value(self.pbest[i]) <= self.get_object_function_value(self.gbest):
self.gbest = self.pbest[i]
# 变异
def mutate(self):
for i in range(self.size):
r0, r1, r2, r3 = 0, 0, 0, 0
while r0 == r1 or r1 == r2 or r2 == r3 or r0 == r3 or r0 == r2 or r1 == r3 or r0 == i:
r0 = random.randint(0, self.size - 1)
r1 = random.randint(0, self.size - 1)
r2 = random.randint(0, self.size - 1)
r3 = random.randint(0, self.size - 1)
#变异向量
for j in range(self.dimension):
self.m[j] = self.gbest[j] + self.f * (self.X[r0][j] - self.X[r1][j]) + self.f * (self.X[r2][j] - self.X[r3][j])
if self.m[j] > self.max_range_x or self.m[j] < self.min_range_x:
self.m[j] = random.uniform(self.min_range_x, self.max_range_x)
#交叉
def crossover(self):
Jrand = random.randint(0, self.dimension)
for j in range(self.dimension):
if random.random() >= self.CR and j != Jrand:
self.gbest[j] = self.m[j]
#更新速度和位置
def updata(self):
for i in range(self.size):
for j in range(self.dimension):
self.V[i][j] = self.w * self.V[i][j] + self.c1 * self.r1 * (self.pbest[i][j] - self.X[i][j]) + \
self.c2 * self.r2 * (self.gbest[j] - self.X[i][j])
self.X[i][j] = self.X[i][j] + self.V[i][j]
def print_best(self):
m = min(self.object_function_values)
i = self.object_function_values.index(m)
print("轮数:" + str(self.cur_round))
print("最佳个体:" + str(self.X[i]))
print("目标函数值:" + str(m))
def evolution(self):
JR = 0.3
while self.cur_round < self.rounds:
if random.random() < JR:
self.make_op()
self.select()
else:
self.updata()
self.mutate()
self.crossover()
self.print_best()
self.cur_round = self.cur_round + 1
if __name__ == "__main__":
def func(x):
return x**2
p = Population(min_range_x=-3,max_range_x=3,min_range_v=-3,max_range_v=3,w=0.6,c1=1.193,c2=1.193,
r1=random.random(),r2=random.random(),size=30,dim=1,rounds=100,f=1,CR=0.1,k=random.random()
,object_func=func)
p.evolution()

浙公网安备 33010602011771号