ArrayList源码分析基础

1.先看ArrayList的图:

 

 

 相关的接口抽象类的介绍:

类名  说明
AbstractCollection

实现了Collection中大量的函数,除了特定的几个函数iterator()和size()之外的函数

AbstractList

该接口继承于AbstractCollection,并且实现List接口的抽象类。

它实现了List中除size()、get(int location)之外的函数。

AbstractList的主要作用:它实现了List接口中的大部分函数和AbstractCollection相比,AbstractList抽象类中,实现了iterator()接口

RandomAccess

RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问

List

有序队列接口,提供了一些通过下标访问元素的函数

List是有序的队列,List中的每一个元素都有一个索引;第一个元素的索引值是0,往后的元素的索引值依次+1

ArrayList本质是动态数组。那么ArrayList是如何实现动态扩容的呢?

ArrayList的长度

 /**
     * The size of the ArrayList (the number of elements it contains).
     *
     * @serial
     */
    private int size;

ArrayList中存储数据的数组对象

    /**
     * Default initial capacity. 默认初始大小
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.  一个空对象
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Shared empty array instance used for default sized empty instances. We
     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
     * first element is added. 一个空对象,如果使用默认构造函数创建,则默认对象内容默认是该值
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /** 
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
     * will be expanded to DEFAULT_CAPACITY when the first element is added.     当前数据对象存放地方
     */
    transient Object[] elementData; // non-private to simplify nested class access

无参构造器

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

elementData=null;无参构造去并不会真实的创建数组,数组会在add方法中去创建,有助于性能的提升,懒加载的方式。

有参构造器

    /**
     * Constructs an empty list with the specified initial capacity.
     *
     * @param  initialCapacity  the initial capacity of the list
     * @throws IllegalArgumentException if the specified initial capacity
     *         is negative
     */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) { 
            this.elementData = new Object[initialCapacity];   //创建指定长度的数组
        } else if (initialCapacity == 0) { 
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

add方法分析

    /**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
// 确定容量,动态扩容 size 初始为0 ensureCapacityInternal(size
+ 1); // Increments modCount!!
// 数组扩容后将数据添加到合适的位置  并size+1
elementData[size++] = e; return true; }

  接下来看:ensureCapacityInternal

 private void ensureCapacityInternal(int minCapacity) {
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }

  接着看:calculateCapacity

    private static int calculateCapacity(Object[] elementData, int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {  // 如果使用无参构造函数 第一次为true,返回10 
            return Math.max(DEFAULT_CAPACITY, minCapacity);  // 比较默认值和 minCapacity中的一个大的值
        }
        return minCapacity;
    }

 

  接下来看: ensureExplicitCapacity

private void ensureExplicitCapacity(int minCapacity) {
modCount++; //操作次数

// overflow-conscious code
if (minCapacity - elementData.length > 0) //判断是否需要扩容 第一次add的时候触发扩容,minCapacity为10
grow(minCapacity);
}

  接下来看:grow

    /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;  // 获取旧数组的长度
        int newCapacity = oldCapacity + (oldCapacity >> 1); // 将旧数字变为原来的1.5倍(因为左移动1位) 第一次 0 还是变成0
        if (newCapacity - minCapacity < 0) 
            newCapacity = minCapacity; // 第一次add的时候 newCapacity 变为10(无参构造函数)
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity); //把原来数组中的内容拷贝到一个新建的指定容量为newCapacity的数组中,扩容
    }

尝试基本的逻辑:

  使用无参构造函数

  第1次add的时候,触发扩容,容量为10。当前数组为:{0,,,,,,,,,}。当前size 1

  第2次add的时候,不触发扩容,容量为10。当前数组:{0,1,,,,,,,,,} 当前size 2

  第11次add的时候,触发扩容,容量为15,当前数组为:{0,1,2,3,4,5,6,7,8,9,10,,,,} 当前size 11

  

执行:
    // ensureExplicitCapacity(11)
private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    // 11 - 10 > 0
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

private void grow(int minCapacity) { // 11
    // 10
    int oldCapacity = elementData.length;
    // 15  newCapacity 是oldCapacity的1.5倍
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    // {0,1,2,3,4,5,6,7,8,9} -- > {0,1,2,3,4,5,6,7,8,9,,,,,}
    elementData = Arrays.copyOf(elementData, newCapacity);
}

  最终变成:{0,1,2,3,4,5,6,7,8,9,10,,,,}

get方法

  

/**
     * Returns the element at the specified position in this list.
     *
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        rangeCheck(index);  //  // 检查下标是否合法
        return elementData(index);
    }

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

set方法

    /**
     * Replaces the element at the specified position in this list with
     * the specified element.
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

remove方法

  

/**
     * Removes the element at the specified position in this list.
     * Shifts any subsequent elements to the left (subtracts one from their
     * indices).
     *
     * @param index the index of the element to be removed
     * @return the element that was removed from the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) { // index = 3
        rangeCheck(index);  检查下标

        modCount++;  
     // 获取要移动的元素的个数 {0,1,2,3,4,5,6,7,8} // 3  size=9  index=3(下标为3) E oldValue
= elementData(index); // oldValue = 3 int numMoved = size - index - 1; // 获取要移动元素的个数 9 - 3 -1 = 5 if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); // 源数组 开始下标 目标数组 开始下标 长度
// 当前数组:{0,1,2,4,5,6,7,8,,} elementData[
--size] = null; // clear to let GC do its work return oldValue; }

 

FailFast机制

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }    
        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

   快速失败的机制,Java集合类为了应对并发访问在集合迭代过程中,内部结构发生变化的一种防护措施,这种错误检查的机制为这种可能发生错误通过抛出 java.util.ConcurrentModificationException

 

posted @ 2021-01-24 14:54  亮sir  阅读(79)  评论(0)    收藏  举报