全部文章

01人工智能概述

什么是人工智能 

定义

人工智能(Artificial Intelligence),英文缩写为AI。利用交叉技术学科对人的能力和意识进行模仿和超越,是新一轮科技革命和产业变革的重要驱动力量。

应用

人工智能小案例

案例一:辨识涂鸦

https://quickdraw.withgoogle.com/

一个面向全球征集涂鸦数据的平台,并且涂鸦数据可以用来训练

案例二:实时物体识别

https://pjreddie.com/darknet/yolo/

案例三:照片风格迁移、图片生成,视频生成

https://deepdreamgenerator.com/

 

人工智能发展历程

1 人工智能的起源

1.1 图灵测试

测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
多次测试(一般为5min之内),如果有超过30%的测试者不能确定被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。

1.2 达特茅斯会议

1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,
约翰·麦卡锡(John McCarthy)
马文·闵斯基(Marvin Minsky,人工智能与认知学专家)
克劳德·香农(Claude Shannon,信息论的创始人)
艾伦·纽厄尔(Allen Newell,计算机科学家)
赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)
等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:
用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:
人工智能
因此,1956年也就成为了人工智能元年。

2 发展历程

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
  • 第一是起步发展期:1956年—20世纪60年代初。
    人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
  • 第二是反思发展期:20世纪60年代—70年代初。
    人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
  • 第三是应用发展期:20世纪70年代初—80年代中。
    20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
  • 第四是低迷发展期:20世纪80年代中—90年代中。
    随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
  • 第五是稳步发展期:20世纪90年代中—2010年。
    由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
  • 第六是蓬勃发展期:2011年至今。
    随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

人工智能三大变革

 

3 小结

  • 人工智能的起源【了解】
    • 图灵测试
    • 达特茅斯会议
  • 人工智能的发展经历了六个阶段【了解】
    • 起步发展期
    • 反思发展期
    • 应用发展期
    • 低迷发展期
    • 稳步发展期
    • 蓬勃发展期

人工智能主要分支

1 主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:
  • 计算机视觉(CV)、
  • 自然语言处理(NLP)
    • 在 NLP 领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。
  • 机器人

1.1 分支一:计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。
当前阶段:
计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。
发展历史:

1.2 分支二:语音识别

11语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。
当前阶段:
语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。
语音识别领域仍然面临着声纹识别和「鸡尾酒会效应」等一些特殊情况的难题。
现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。
发展历史:

  • 百度语音识别:
    • 距离小于1米,中文字准率97%+
    • 支持耳语、长语音、中英文混合及方言

1.3 分支三:文本挖掘/分类

这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。
当前阶段:
我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。
文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。
发展历史:

1.4 分支四:机器翻译

机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。
当前阶段:
机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。
在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。
专业领域的机器翻译(比如医疗领域)表现通常不好。
发展历史:

1.5 分支五:机器人

机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。
机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。
当前阶段:
自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在 20 世纪 80 年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入 21 世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。
但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资。
发展历史:

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。
大多数早期技术至少已经处于应用阶段了,而且其中一些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

2 小结

  • 人工智能主要分支【了解】
    • 计算机视觉
    • 语音识别
    • 文本挖掘/分类
    • 机器翻译
    • 机器人

人工智能发展必备三要素

数据、算法、算力(CPU,GPU,TPU)

 

算力之CPU、GPU对比:
  • CPU主要适合I\O密集型的任务
  • GPU主要适合计算密集型任务
提问:什么类型的程序适合在GPU上运行?
(1)计算密集型的程序。
所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
(2)易于并行的程序。
GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
进一步了解CPU和GPU的区别:
Google TPU 介绍:

AI公司的分类&产业现状(行业布局)

产业全局视角

我们再来看看人工智能的产业现状怎么样,从全局的视角来了解整个行业,这对我们知识体系的建立是非常有帮助的。对于人工智能的产业,我们可以基于产业链的上下游关系,把它分为基础层、技术层和应用层。

 基础层

我们先来看最下面的基础层,它按照服务的线条被划分成芯片服务、云服务、机器学习平台和数据服务,它们都是我们整个 AI 行业最底层服务提供者。这里面,讯飞的开放平台是我们接触比较多的机器学习平台,阿里云、百度云是做得比较好的云服务提供商。
 

技术层

是 AI 技术的提供者,我按照技术类别对它进行了划分。这里面,我们比较熟悉的企业有商汤、依图,它们主要是提供计算机视觉服务(CV:computer version),最常见的应用场景就是人脸识别了。 

 应用层

应用层是 AI 技术对各行业的应用服务,就拿我们最熟悉的抖音来说,它通过 AI技术不仅能实现短视频内容的个性化分发,把你感兴趣的内容展示出来,还能在拍摄短视频时候,让你变美变瘦,身体各个部位“收放自如”。

除此之外,在整个 AI 产业链中,BAT 提供了全链条的服务,它们既做了最底层的基础服务,如云服务、机器学习平台,也做技术输出,如 BAT 会有自己的计算机视觉、语音识别等能力,同时也有对外的应用场景,所以我把它们放到了一列中。

 

但是作为 AI 产品经理,我们需要注意,目前 AI 技术可以解决的问题,一定是在某一个明确的特定业务领域内,且有特定目的的问题,比如是搜索推荐、机器翻译、人脸识别等
等。而我们在电影中看到的那些“无所不能”的 AI 机器人,它们属于通用人工智能领域,这离我们还很远。
上面的全景图告诉了我们,整个产业链的分层和每层的典型公司都有哪些。不过如果想要转到 AI 行业,你还需要多了解一些行业内的成熟应用。下面这张典型应用案例图就能帮到你。
 

我挑出了 4 个应用 AI 技术比较早,发展也相对成熟的行业,它们分别是金融风控,智能支付、智能安防以及智能客服。

我会通过它们来给你讲讲,目前一些成熟的 AI 技术都是怎么应用的,应用它们对这些行业有什么帮助,以及这些行业中比较有代表性的企业和产品分别是什么。
金融风控行业 主要是用机器学习技术把原本依赖人工的风险管理变为了依赖机器算法的方式,通过收集借款人的相关数据(收入、年龄、购物偏好、过往平台借贷情况和还款情况等)输入到机器学习模型中,来预测借款人的还款意愿和还款能力,判断是否对他放款。AI 技术的应用解决了原有人工信贷审核效率低下、无标准等问题。目前,市场上做金融风控的 AI 企业不只有老牌的百融云创、邦盛科技,还有蚂蚁集团、京东数科、度小满这样的大型互联网公司,还有冰鉴这样新型的创新型公司等等。
智能支付行业主要是通过人脸识别、指纹识别、声纹识别、虹膜识别等多种生物识别技术,帮助商户提高支付效率。像蚂蚁、京东数科、商汤和云从科技这些我们比较熟悉的企业,都属于智能支付行业。其中,云从科技、旷视科技、商汤科技和依图科技还一起被誉为 CV 界的四小龙。
智能安防行业 。互联网产品经理平时接触这个行业可能比较少,因为目前市场上主要做智能安防的企业有海康威视、大华股份、汉邦高科等,它们主要是通过人脸识别、多特征识别、姿态识别、行为分析、图像分析等相关技术合业务场景的解决方案,来帮助企业、政府解决防控需求的。像我们都听说过,通过 AI 摄像头自动识别犯罪嫌疑人,通过深度学习技术检测车辆,并且识别出车牌号码等特征,用于停车场收费、交通执法等场景。
智能客服行业。这个行业主要是通过自然语言处理技术、知识图谱,对用户输入的问题进行识别分析,根据知识系统寻找答案,解决原有人工客服效率低下、成本高这样的问题。
就像很多银行现在都采用智能客服,对它们的用户进行理财推荐,我就接到过不少这样的电话。但是一般来说,它们和真人的区别还是很明显的。目前市场上比较成熟的智能客服企业主要是环信、云知声、百度等等。

AI产品类型

AI赋能型产品

保险、在线教育、游戏、医疗、媒体、法律等各行各业赋能使用。

AI技术型产品

以智能语言、自然语言处理、机器视觉等技术为核心搭建产品。

底层通用SaaS平台

Pass话平台能力

科大讯飞、阿里巴巴:提供ASR(语音识别)、TTS(文字转语音)

AI应用型产品

客服机器人

人工智能商业模式

 

在人工智能产业中,处于不同层级的企业,根据自身能力和方向的不同,都有自己的一套商业模式
总的来说,商业模式可以分为:数据收集和治理、计算资源服务、AI 技术服务以及产品附加 AI 这四种。
数据收集和治理类型的公司大多拥有自己的数据流量入口,致力于对于数据的收集和加工。比如数据堂,它主要提供数据采集(包括从特定设备,地点采集,采集范围包括图片、文字、视频等)、数据标注(主要是对图像进行标注,如标注人脸、动作等)服务。
计算资源服务类型的公司,又可以分成两类,一类致力于底层的芯片、传感器的研发服务,就像寒武纪这样的企业,它们作为一个人工智能芯片公司,主要的收入来自云端智能芯片加速卡业务、智能计算集群系统业务、智能处理器 IP 业务。另一类是 AI 计算服务,比如百度的 AI 开放平台,平台除了提供百度自有的 AI 能力之外,也为上下游合作伙伴提供了一个 AI 产品、技术展示与交易平台。
位于技术层的 AI 技术服务类公司,它们为自己产品或者上游企业提供底层的 AI 技术服务,服务模式更多的是技术接口对接,比如人脸识别服务的服务模式主要就是 API 接口或者 SDK 部署的方式。
产品附加 AI,即应用层的大部分产品,它们都是通过 AI 技术叠加产品,赋能某个产业的模式。比如滴滴通过 AI 技术应用于自有的打车业务线,包括营销环节的智能发券、发单环节的订单预测、行车中的实时安全检测等等。

AI 产品经理所需技能

通过上面的分析,我们不难发现,不同产业层级和商业模式都需要具有相应能力的 AI 产品经理。
 
首先是基础层。处于基础层的企业主要提供算力和数据服务,这些企业的特点是,偏硬件,偏底层技术,技术人员居多。这就要求 AI 产品经理了解如云计算、芯片、CPU/GPU/FPGA/ASIC 等硬件技术,以及行业数据收集处理等底层技术和框架。所以,原来从事底层硬件、技术平台、基础框架的产品经理,就比较适合转型到基础层了。
而处于技术层的企业,主要的业务是为自己的业务或者上游企业提供相应的技术接口。这些企业的特点是技术能力强,大部分业务都是 ToB 服务。这个时候,AI 产品经理就必须要具备企业所在领域的技术知识,如语音识别(ASR)、语音合成(TTS)、计算机视觉(CV)、自然语言处理(NLP)等通用技术,最好还能了解 TensorFlow、CaffeSciKitlearn 这样的机器学习框架。
所以,技术层的 AI 产品经理本身必须具备一定的技术基础,最好还能是算法出身的工程
师。但不管你属于哪一种,都一定要保有探索的热忱。
最后,我们再来看应用层,这类型公司就是我们日常生活中接触最多的互联网公司,只是其中一些公司走的比较靠前,应用了 AI 技术来赋能自己的内部业务。比如滴滴使用 AI 技术做智能分单、智能补贴;京东数科是用 AI 技术做智能反欺诈,大数据风控。这一层是互联网产品经理转型最多,也是成功率最高的一层。处于应用层的企业,大多数直接面向 C 端用户,所以它们关注的是如何结合市场特点,来利用 AI 技术创造性地设计出符合市场需求的产品。所以这类型的产品经理不仅要求对所在行业有深刻的认识,同时也要对 AI 技术有一定的了解。能够与算法和研发工程师顺畅沟通与配合,能够判断算法同学交付的产品是否满足业务需求。
总之,这一层的 AI 产品经理岗位,比较适合已经在某个领域具备了行业经验,打算转型做这个领域产品经理的同学。对于这样的同学,这一层的入门门槛比较低,在补充一定的 AI技术知识后,获得一份 AI 产品经理的 Offer 相对来说会容易很多。
 
好了,现在我们已经知道了什么是人工智能,以及整个产业的现状。目前人工智能与各个行业还在不断融合,AI 也会继续向各个行业进行渗透。在我看来,AI 最终不会成为一个行业,而是会像移动互联网一样成为一个基础建设,赋能到整个互联网。
 
在确定了自己的未来方向之后,你就可以有针对性地去补足技术上的短板了。如果你倾向于去做机器学习平台的产品经理,就去重点学习模型建模的过程,甚至要自己尝试去使用一些公共的机器学习平台,去创建一个算法模型。比如阿里云的 PAI、百度的EasyDL,它们都是很优秀的建模平台。如果你想做大数据风控方向的 AI 产品经理,就需要知道机器学习模型内部逻辑,甚至要了解一下算法的逻辑是怎么样的。在学习技术知识方面,我建议你可以购买一些入门的课程,可以先从简单的内容学起,再慢慢深入。

最重要的

你一定要对这些信息进行归纳总结,提炼出自己的思考。你可以尝试自己去搭建一个行业的框架。行业专有名词、基本术语行业的整体规模,未来的发展空间整个行业的生命周期,当前处于哪个阶段行业的产业链,上下游供应商情况行业中不同企业的商业模式行业整体的人才结构分布情况当前行业中头尾部企业这样的话,当你去面试 AI 产品这个岗位的时候,因为你之前对整个行业做过充分的总结,就可以很有结构地表达出你对这个行业的看法,你的答案也会比其他竞争者更有高度。这对你提高面试通过率,甚至是面试定级都非常有帮助
 

 

 

 

 

 

posted @ 2025-04-11 22:44  指尖下的世界  阅读(304)  评论(0)    收藏  举报