Lucas定理证明

考虑 \(\binom {p}{n} \bmod p\) 取值时,\(\binom {p}{n} \equiv \frac {p!}{n!(p - n)!} \equiv [n = 0 \vee n = p]\pmod{p}\),所以二项式定理中:

\[\begin {align} (a + b) ^ p & = \sum_{n = 0}^{p} \binom {p}{n} a^{n}b^{p - n} \\ & \equiv \sum_{n = 0} ^{p}[n = 0 \vee n = 0]a ^{n}b^{p - n} \\ & \equiv a^{p}+ b^{p} \pmod {p} \end {align} \]

所以 \((1 + x) ^ {p} \equiv 1 + x ^ p \pmod {p}\)

\(a, b\) 进行分解:

\[a = a_{0}p^{0} + a_{1}p^{1} + \cdots + a_{k}p^{k}\\ b = b_{0}p^{0} + b_{1}p^{1} + \cdots + a_{k}p^{k}\\ \]

对于 \(\binom {a}{b} \bmod p\),利用生成函数的方法:

\[\begin {align} (1 + x) ^ {a} & =(1 + x) ^ {a_{0}p^{0}} \cdot (1 + x)^{a_{1}p^{1}} \cdots (1 + x)^{a_{k}p^{k}}\\ & \equiv (1 + x^{p^{0}})^{a_{0}} \cdot (1 + x^{p^{1}})^{a_{1}} \cdots (1 + x^{p^{k}}) ^ {a_{k}} \pmod {p} \end {align} \]

得到的等式左边对应 \(x^{b}\) 的系数为 \(\binom {a}{b}\),右边对应 \(x^{b}\)\(\sum x^{b_{i}p^{i}}\) 的系数为 \(\binom{a_{0}}{b_{0}} \cdot \binom {a_{1}}{b_{1}} \cdots \binom {a_{k}}{b_{k}}\),可以得到下列递归式:

\[\begin {align} lucas (a,b) & \equiv \binom{a_{0}}{b_{0}} \cdot \binom {a_{1}}{b_{1}} \cdots \binom {a_{k}}{b_{k}} \\ & \equiv \binom {a \bmod p}{ b \bmod p} \cdot lucas ({\lfloor a / p \rfloor},{\lfloor b / p\rfloor}) \pmod {p}\\ \end {align} \]

证毕。

posted @ 2022-10-18 15:38  Lucius7  阅读(130)  评论(0)    收藏  举报