10、散点图
In [ ]:
'''
散点图、矩阵散点图
plt.scatter(), pd.scatter_matrix()
'''
# 如果x,y分别代表经纬度,点的大小--->第三维度
In [14]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
In [16]:
# plt.scatter()散点图
# plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None,
# alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)
plt.figure(figsize=(8,6))
x = np.random.randn(1000)
y = np.random.randn(1000)
plt.scatter(x,y,marker='.',
s = np.random.randn(1000)*100,
cmap = 'Reds',
c = 'g',# 颜色大小显示---->第四个纬度
alpha = 0.8)
plt.grid()
# s:散点的大小
# c:散点的颜色
# vmin,vmax:亮度设置,标量
# cmap:colormap
In [28]:
# pd.scatter_matrix()散点矩阵
# pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None,
# grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)
from pandas.plotting import scatter_matrix
df = pd.DataFrame(np.random.randn(100,4),columns = ['a','b','c','d'])
scatter_matrix(df,figsize=(10,6),
marker = 'o',
diagonal='kde',
alpha = 0.5,
range_padding=0.1)
plt.show()
# diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图
# range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点
# 用来判断散点矩阵之间的关系
In [ ]: